Computes a confidence interval for a population Cramer's V coefficient of nominal association for an r x s contingency table and its approximate standard error. The confidence interval is based on a noncentral chi-square distribution, and an approximate standard error is recovered from the confidence interval.
ci.cramer(alpha, chisqr, r, c, n)
alpha value for 1-alpha confidence
Pearson chi-square test statistic for independence
number of rows in contingency table
number of columns in contengency table
sample size
Returns a 1-row matrix. The columns are:
Estimate - estimate of Cramer's V
SE - recovered standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Smithson M (2003). Confidence Intervals. Sage.
ci.cramer(.05, 19.21, 2, 3, 200)
#> Cramer's V SE LL UL
#> [1,] 0.3099 0.0674 0.1888 0.4529
# Should return:
# Estimate SE LL UL
# [1,] 0.3099 0.0674 0.1888 0.4529