
Digital RF 2.0

Juha Vierinen, William Rideout, Frank Lind, Robert Schaefer

Last edit: Mar 9, 2017

Overview

Underlying HDF5 format
Design background
HDF5 layout details

High level namespace layout

Writing Digital RF data with C
C write API description

Init method
Continuous data write method
Block data write method
Close method
Debug methods

C write example
C write example with SIGINT handling to remove last file

Writing Digital RF data with Python
Python write API description

Init
Write continuous data
Write blocked data
Debug methods
Close

Python write example

Reading Digital RF data with Python
Python read API description
Python read example
Recovering a lost metadata.h5 file

Reading Digital RF data with Matlab
Matlab read API description
Reading Digital RF data with Matlab example

Appendix - Technical discussions
Leap seconds
VDIF & VITA 49 (Digital IF ; ANSI)

Overview

Digital RF 2.0 is a ​disk storage​ and archival format for radio signals. The design goals are the
following:

● The format and the programming language interfaces are as simple as possible.
● Allow easy and efficient random access to multiple heterogenous channels based on

global sample index and channel name.
● Allow user to optionally include metadata in a flexible and effortless manner.
● Data files should be self-contained, i.e., interpretation of core properties of a file should

not depend on any other file.
● Data files should have a logical namespace structure which, which allows usage of

heterogeneous data in a unified manner.
● Directory and file naming conventions should allow efficient file system storage and

access over years of stored data.
● Data should be in a format that is cross-platform, i.e., easy to read with different

programming languages on different computing hardware.
● Storing of data should use storage space of the natural binary representation of the data,

be it 1-bit integer or 128-bit floating point.
● Sparsely sampled data should also achieve data storage proportional to the amount of

data actually stored.
● Both real and complex valued signals are supported. Complex data can be built from any

data type - integer or floating point.
● Recording multiple subchannels at once is supported. These subchannels must be

written simultaneously as a block with each write command. All subchannels must share
all the same metadata in the file - starting time, sample rate, complex versus
single-valued, etc.

● Allow optional data compression checksumming when needed.
● Allow adding features, while maintaining backwards compatibility.

We intend the data format for various different use cases, including ring buffer on disk, and data
archival. The format is flexible enough to support multiple different usage scenarios, such as
single channel digital receiver recording, recording of multi channel polyphase filterbank output,
or recording of different independent instruments with different sample rates and data formats.

Digital RF 2.0 is ​not ​a packetized format, such as VDIF or VITA 49. For a discussion on this
topic, see section in the end of this document.

This document outlines the underlying Hdf5 file layout along with the file system layout of Digital
RF 2.0 Hdf5 files, and describes the C and python interfaces that have been designed to read
and write files in this format. Example code is given for all interfaces.

Digital RF 2.0 Hdf5 files differ from Digital RF 1.0 in that Digital RF 2.0 subdirectories and files
have predictable names. This allows great simplification in the read API, because the API can
predict the filenames it needs to access, and never needs to run glob to access files. Not only
is this simpler to implement, but it is also faster when there are large number of subdirectories or
files. Indeed, with Digital RF 2.0, read access is independent of the amount of Digital RF data.

To accomplish this subdirectory and filename predictability, we changed two of the parameters
used to write Digital RF data from (files_per_directory and samples_per_file) to
(subdirectory_cadence_seconds and file_cadence_milliseconds). In essence, this means that
subdirectories and file cover a set sample range, and will contain as many samples in that range
as happen to be written. Previously, Digital RF 1.0 subdirectories and files always contained to
same number of samples, and the possibility of data gaps made their names unpredictable,
since their names were tied to the first sample each contained.

With Digital RF 2.0, subdirectories are always named with a timestamp where subdir_timestamp
= subdirectory_cadence_seconds x N, where N is an integer. Files are always named with a
millisecond timestamp where (subdir_timestamp*1000 - file_millisecond_timestamp) =
file_cadence_milliseconds x M, where M is an integer. To ensure every file in a subdirectory
contains the same maximum number of samples, the rule is enforced that
subdir_cadence_secs*1000 % file_cadence_millisecs == 0.

If Hdf5 file sizes are allowed to vary, this implies that chunked storage must be used. Chunked
storage will slow down read speeds somewhat. The use of compression and/or checksums also
requires chunked storage. To allow Digital RF 2.0 to have a mode without chunked storage,
and so with the fastest possible read speeds, we added one additional write argument:
is_continuous. If the user sets the is_continuous argument to 1, then they can only write
continuous blocks of data. When is_continuous == 1 and there is no checksum or compression,
the API writes all files of size = maximum number of samples, and chunked storage is not used.
If a user starts writing at a sample value in the middle of a file’s range, then the preceding
samples in that file will all be filled in with filler values (NaN for floats, smallest possible value for
ints). This filler value may also appear at the end of Digital RF 2.0 files when chunking is not
used.

Underlying HDF5 format

Design background

We choose HDF5 as the underlying file format for Digital RF for a number of reasons. The
underlying C I/O code for HDF5 is highly optimized for fast writing. Also, the HDF5 format allows
a file to be self-describing, so that users who encounter Digital RF files without access to this
documentation or API could still understand this data. Finally, HDF5 is a well-accepted file
format in the science community.

We made a design decision in Digital RF to support both continuous and noncontinuous data.
For this reason, there are two HDF5 datasets at the top level of every Digital RF HDF5 file -
rf_data and rf_data_index. The rf_data dataset contains the recorded values of RF data,
independent of the times the samples were recorded. The rf_data_index dataset records the
beginning of each continuous block of data in that particular file. The first sample in each Digital
RF HDF5 file will always have an entry in rf_data_index, and there will be an additional entry in
rf_data_index when a data gap occurs. For continuous data, the rf_data_index will contain only
one row.

Another design decision underlying Digital RF is the requirement to support storing RF data in
rf_data in a variety of data types. Data can be written as either complex or real (i.e.,
single-valued) numbers. Data formats can be any data format supported by the HDF5 standard,
from bytes to 128 byte floating point numbers. One or more subchannels can be written
simultaneously as a block. A complex vector would be a N x num_subchannels table, where
each complex subchannel is made up of ‘r’ and ‘i’ column. This layout is based on the same
layout used by the python module h5py to store complex numbers, but in our format complex
values can be floats or any type of integer. A single valued signal would be a N x
num_subchannels vector, without column names.

When writing Digital RF 2.0 data, we have used the concept of a channel. A channel is opened
by the init method, and is defined by:

1. The top level directory where the channel is to be written
2. The channel name, which is also the subdirectory that is created under the top level

directory
3. Whether the data is complex or single valued
4. The data format of the data (independent of whether its complex or single valued)
5. The number of subchannels to be simultaneously recorded (1 or greater)
6. The sample rate in Hz - specified by two integers - numerator and denominator. This

means the sample rate is always a rational number.
7. The subdirectory cadence in integer seconds
8. The file cadence in integer millseconds.
9. The starting sample index (which is the unix timestamp times the sample rate - see more

later in this document)
10. A user-defined UUID string to help match this channel with other information/metadata.

11. A compression level (0 for no compression, 9 for maximum)
12. A checksum flag
13. An is continuous flag. If is continuous, then gapped data cannot be passed in. This

allows Digital 2.0 files to not use slower chunked data storage in the case where the
data is continuous and compression and checksum are off.

These properties never change for a given channel, and are recorded in a file called
metadata.h5, which is stored at the channel directory level. If more than one subchannel is
written, all subchannels must share the above metadata - for example, the global sample times
and the sample rates. These properties are also stored at the top level of each HDF5 file, along
a few that may change between files. Storage at in the metadata.h5 level is important in that it
allows data to be read without the need to glob the files.

The metadata attributes in metadata.h5 are:

1. u​int64_t​ H5Tget_class (result of H5Tget_class(hdf5_data_object->hdf5_data_object)
2. u​int64_t​ H5Tget_size (result of H5Tget_size(hdf5_data_object->hdf5_data_object)
3. u​int64_t​ H5Tget_order (result of H5Tget_order(hdf5_data_object->hdf5_data_object)
4. u​int64_t​ H5Tget_precision (result of

H5Tget_precision(hdf5_data_object->hdf5_data_object)
5. u​int64_t​ H5Tget_offset (result of H5Tget_offset(hdf5_data_object->hdf5_data_object)
6. u​int64_t​ subdir_cadence_secs - the number of seconds of data per subdirectory
7. u​int64_t​ file_cadence_millisecs - the range of the data per file in milliseconds
8. u​int64_t​ sample_rate_numerator
9. u​int64_t​ sample_rate_denominator
10. ​int​ is_complex - 1 if complex values, 0 if single valued.
11. ​int​ num_subchannels - 1 or more subchannels in the file. The meaning of the different

subchannels is not defined in the rf file, but may be in accompanying digital metadata
12. ​int​ is_continuous - 1 if data is continuous, 0 if not.
13. string epoch - start time at sample 0 (always 1970-01-01 UT midnight)
14. string digital_rf_time_description - a text description of how time is stored in this format
15. string digital_rf_version -A version number of the Hdf5 RF format. Now 2.3.

All those attributes are also stored in each rf data file s attributes of the rf_data dataset. In
addition, there are four extra attributes:

1. u​int64_t​ sequence_num - running number from start of acquisition. used to identify
missing files

2. u​int64_t​ init_utc_timestamp (changes at each restart of the recorder - needed if leap
seconds correction applied)

3. u​int64_t​ computer_time - Computer time as unix seconds at creation of individual rf file.
4. string uuid_str - set independently at each restart of the recorder

To make the write API as simple and minimalistic as possible, the API only deals with one
channel per instance. While we anticipate most radar data to be continuous, the recorded
channel can be written in arbitrary sized vectors with arbitrary sized gaps between the vectors. If
there are multiple subchannels in that channel, all subchannels must have the same gaps. This
is to support time decimated blocks to accommodate high sample rate acquisition at
manageable data rates. To implement functionality such as multi-channel recording where the
channels have different times or sample rates, multiple channels are used. See the next section
for more details on this.

In the rf_data_index dataset, the data is globally indexed as unsigned 64 bit integer as samples
since 1970-01-01T00:00:00.00. This should be enough at 25 MHz for until the year 25367, and
2554 with a 1 GHz sample rate. With 10 GHz, we will run into a wall shortly, in year 2028, but by
then we could just switch to 128 bit integers. Global indices will make things like ring buffer type
functionality easier to implement, or allow dealing with situations where the data collection
program is stopped or killed and restarted, but we are essentially collecting the same stream
with a gap. Global indices will also make aligning data across multiple channels easier.

HDF5 layout details

Each file contains the following elements:

/rf_data # MxNx2 or MxNx1 vector of data, where M is the number of subchannels, N is the
samples per file, and 2 for complex data, 1 for single valued. Data type can be any valid HDF5
data type.
/rf_data_index # Nx2 uint64, mapping between local (starts at 0) and global sample indices.
The first row is always the global sample index and 0, indicating the first sample in the file.

The /rf_data dataset has the 19 attributes described in the previous section, 15 that match the
high level metadata.h5 file, and 4 that may vary between files in a channel.

The HDF5 files are written in the following way:

2014-03-30T12-00-00/rf@1396379502.000.h5

A new subdirectory is created at first write. Its name is in the format
YYYY-MM-SSTHH-MM-SS, where the timestamp ts is the largest for which

ts = subdirectory_cadence_seconds x N <= first_sample//sample_rate

is true, where N is an integer. A new subdirectory will be created when

next_sample/sample_rate >= subdirectory_cadence_seconds x (N+1)

The use of subdirectories is to avoid too many files in a directory (which can be very detrimental
to performance), and to also naturally divide the amount of data into smaller more manageable
bits. This naming convention also means that the sample range in any given subdirectory is
predictable.

The file name rf@1396379502.000.h5 includes unix seconds and milliseconds. The millsecond
timestamp of every file is determined by the largest millisecond timestamp where

file_ms = file_cadence_millseconds * N <= first_sample // (sample_rate / 1000.0)

is true, where N is an integer. All following samples will be written to the same file until

first_sample // (sample_rate / 1000.0) >= file_cadence_millseconds * (N+1). The maximum
number of samples a file can hold is:

max_samples = file_cadence_millisecs * (sample_rate / 1000.0)

To ensure file boundaries and subdirectory boundaries line up, the write API requires
subdir_cadence_secs and file_cadence_millisecs to be related by:

(subdir_cadence_secs * 1000) % file_cadence_millisecs == 0

Note that files that are being actively written to have the four characters <tmp.> prepended to
their name, such as tmp.rf@1396379502.000.h5. When a new Hdf5 file is opened, the API will
automatically rename the file to remove the <tmp.> characters. This renaming will also occur for
the last file written when the close method is called. The reason for this special name for files
being actively updated is to allow mirroring or backup scripts to determine which files are
complete and which might change. See the C examples for how to add a SIGINT handler to
remove the tmp file in case of a control-C interrupt for a C writing program.

High level namespace layout

In order to structure the data, we will use the following type of namespace layout:

<top_level_directory>/<channel_name>/2014-03-30T12-00-00/rf@1396379502.000.h5

where the basename of the top_level_directory has the recommended form
experiment_name-{timestamp}. Here a timestamp with curly brackets is optional. In some
cases it is nice to have (eg., campaign type of recording), where are in other cases not wanted
behaviour (eg., a ring buffer that you expect to always reside in some place).

Digital metadata is defined in a separate document, but the Digital RF read api contains a call to
read digital metadata if it written in the directory:

<top_level_directory>/<channel_name>/metadata/

While not yet implemented, a future release will make it to make it easy to identify data in digital
rf format by placing a file README.digital_rf is placed under the top_level_directory. This file
would act as an identifier, as well as a description of the data format.

It is permissible to start acquisitions into the same top_level_directory/channel_name directory.

Writing Digital RF data with C

C write API description

The following four methods represent the low level C RF write API. There are two write
methods, one for writing a continuous block, and another with additional arguments to allow for
writing a collection of data blocks with a single call.

Init method

Digital_rf_write_object * digital_rf_create_write_hdf5(​char​ * directory, hid_t dtype_id,

uint64_t subdir_cadence_secs,
uint64_t file_cadence_millisecs,
uint64_t global_start_sample,
uint64_t sample_rate_numerator,
uint64_t sample_rate_denominator, ​char​ * uuid_str,

 ​int​ compression_level, ​int​ checksum, ​int​ is_complex,
 ​int​ num_subchannels, ​int​ is_continuous,

int​ marching_dots)

/* digital_rf_create_write_hdf5 returns an Digital_rf_write_data_object used to write a single
channel of RF data to a directory, or NULL with error to standard error if failure.

 Inputs:

char * directory - a directory under which to write the resultant Hdf5 files. Must already
exist. Hdf5 files will be stored as YYYY-MM-DDTHH-MM-SS/rf@<unix_second>.<3 digit
millsecond>.h5

hid_t dtype_id - data type id as defined by hdf5.h

uint64_t subdir_cadence_secs - Number of seconds of data found in one subdir. For
example, 3600 subdir_cadence_secs will be saved in each subdirectory

uint64_t files_per_directory - the number of Hdf5 files in each directory of the form
YYYY-MM-DDTHH-MM-SS. A new directory will be created when that number is reached. If 0,
then subdirectories are instead created on hour boundaries, and will always have the form
YYYY-MM-DDTHH:00:00.

uint64_t global_start_sample - The start time of the first sample in units of samples since
UT midnight 1970-01-01.

uint64_t sample_rate_numerator - sample rate numerator. Final sample rate is
sample_rate_numerator/sample_rate_denominator in Hz

uint64_t sample_rate_denominator - sample rate denominator. Final sample rate is
sample_rate_numerator/sample_rate_denominator in Hz. These two arguments enforce the rule
that sample rates must be a rational fraction.

char * uuid_str - a string containing a UUID generated for that channel. uuid_str saved
in each resultant Hdf5 file's metadata.

int compression_level - if 0, no compression used. If 1-9, level of ​gzip​ compression.
Higher compression means smaller file size and more time used.

int checksum - if non-zero, HDF5 checksum used. If 0, no checksum used.

int is_complex - 1 if complex (IQ) data, 0 if single-valued

int num_subchannels - the number of subchannels of complex or single valued data
recorded at once. Must be 1 or greater. Note: A single stream of complex values is one
subchannel, not two.

int is_continuous - 1 if all data to be written will be gap free, 0 if there might be gaps. If

1, then any attempt to write gapped data will raise an error

int marching_dots - non-zero if marching dots desired when writing; 0 if not

Continuous data write method

int​ digital_rf_write_hdf5(Hdf5_write_data_object *hdf5_data_object, uint64_t

global_leading_edge_index, ​void​ * vector, uint64_t vector_length)
/*
digital_rf_write_hdf5 writes a continuous block of data from vector into one or more Hdf5 files

 Inputs:

Digital_rf_write_data_object *hdf5_data_object - C struct created by
digital_rf_create_write_hdf5

uint64_t global_leading_edge_index - index to write data to. This is a global index with

zero representing the sample taken at the time global_start_sample specified in the init method.
Note that all values stored in Hdf5 file will have global_start_sample added, and this offset
should NOT be added by the user. Error raised and -1 returned if before end of last write.

void * vector - pointer into data vector to write

uint64_t vector_length - number of samples to write to Hdf5

Affects - Writes data to existing open Hdf5 file. May close that file and write some or all

of remaining data to new Hdf5 file.

Returns 0 if success, non-zero and error written if failure.
 */

Block data write method

int​ digital_rf_write_blocks_hdf5(Hdf5_write_data_object *hdf5_data_object, uint64_t *

global_index_arr, uint64_t * data_index_arr, uint64_t index_len, ​void​ * vector, uint64_t
vector_length)

/*
digital_rf_write_blocks_hdf5 writes blocks of data from vector into one or more Hdf5 files

Inputs:

Hdf5_write_data_object *hdf5_data_object - C struct created by
digital_rf_create_write_hdf5

uint64_t * global_index_arr - an array of global indices into the samples being written.
The global index is the total number of sample periods since data taking began, including gaps.
Note that all values stored in Hdf5 file will have global_start_sample added, and this offset
should NOT be added by the user. Error is raised if any value is before its expected value
(meaning repeated data).

uint64_t * data_index_arr - an array of ​len​ = ​len​(global_index_arr), where the indices are
related to which sample in the vector being passed in is being referred to in global_index_arr.
First value must be 0 or error raised. Values must be increasing, and cannot be equal or
greater than index_len or error raised.

uint_64 index_len - the ​len​ of both global_index_arr and data_index_arr. Must be
greater than 0.

void * vector - pointer into data vector to write

uint64_t vector_length - number of samples to write to Hdf5

Affects - Writes data to existing open Hdf5 file. May close that file and write some or all
of remaining data to new Hdf5 file.

Returns 0 if success, non-zero and error written if failure.
 */

Close method

int​ digital_rf_close_write_hdf5(Hdf5_write_data_object *hdf5_data_object)
/* digital_rf_close_write_hdf5 closes open Hdf5 file if needed and releases all memory
associated with hdf5_data_object

Inputs:

Hdf5_write_data_object *hdf5_data_object - C struct created by
digital_rf_create_write_hdf5
 */

Debug methods

char​ * digital_rf_get_last_file_written(Digital_rf_write_object *hdf5_data_object)
/* digital_rf_get_last_file_written returns a ​malloced​ string containing the full path to the last hdf5 file
written to

 Inputs:
Digital_rf_write_object *hdf5_data_object - C ​struct​ created by digital_rf_create_write_hdf5

Returns:
 char * containing the full path to the last hdf5 file written to. User is responsible for freeing string
when done.

Returns empty string if no data written.
 */

char​ * digital_rf_get_last_dir_written(Digital_rf_write_object *hdf5_data_object)
/* digital_rf_get_last_dir_written returns a ​malloced​ string containing the full path to the last ​dir​ written to
 *
 * Inputs:
 * Digital_rf_write_object *hdf5_data_object - C ​struct​ created by
digital_rf_create_write_hdf5
 *
 * Returns:
 * char * containing the full path to the last directory written to. User is responsible for
freeing string when done.
 * Returns empty string if no data written.
 */

uint64_t​ digital_rf_get_last_write_time(Digital_rf_write_object *hdf5_data_object)
/* digital_rf_get_last_write_time returns the ​unix​ ​timestamp​ of the last write

Inputs:

Digital_rf_write_object *hdf5_data_object - C ​struct​ created by digital_rf_create_write_hdf5

Returns: uint64_t representing the ​unix​ ​timestamp​ of the last write. If no writes occurred yet, returns 0.
 */

C write example

/*
 * Simple example of writing Digital RF 2.0 data with C API
 *
 * This simple example writes continuous complex data of short ​ints
 *
 * $Id: example_rf_write_hdf5.c 875 2015-12-02 17:51:40Z ​brideout​ $
 */

#include​ ​"digital_rf.h"

int​ main (​int​ argc, ​char​ *argv[])
{

​/* local variables */
Digital_rf_write_object * data_object = NULL; ​/* main object created by ​init​ */
uint64_t vector_leading_edge_index = 0; ​/* index of the sample being written starting at zero with

the first sample recorded */
uint64_t global_start_index; ​/* start sample (​unix​ time * sample_rate) of first measurement - set

below */
​int​ i, result;

​/* dummy ​dataset​ to write */
​short​ data_short[100][2];

​/* writing parameters */
uint64_t sample_rate_numerator = 100; ​/* 100 Hz sample rate - typically MUCH faster */
uint64_t sample_rate_denominator = 1;
uint64_t subdir_cadence = 4; ​/* Number of seconds per ​subdirectory​ - typically longer */
uint64_t millseconds_per_file = 400; ​/* Each ​subdirectory​ will have up to 10 400 ​ms​ files */
​int​ compression_level = 1; ​/* low level of compression */
​int​ checksum = 0; ​/* no checksum */
​int​ is_complex = 1; ​/* complex values */
int​ is_continuous = 1; ​/* continuous data written */
​int​ num_subchannels = 1; ​/* only one ​subchannel​ */
​int​ marching_periods = 0; ​/* no marching periods when writing */
​char​ uuid[100] = ​"Fake UUID - use a better one!"​;
uint64_t vector_length = 100; ​/* number of samples written for each call - typically MUCH longer

*/

​/* ​init​ ​dataset​ */
​for​ (i=0; i<100; i++)
{

data_short[i][0] = 2*i;
data_short[i][1] = 3*i;

}

​/* start recording at global_start_sample */
global_start_index = (uint64_t)(1394368230 * (​long

double​)sample_rate_numerator/sample_rate_denominator) + 1; ​/* should represent 2014-03-09 12:30:30
and 10 milliseconds*/

printf(​"Writing complex short to multiple files and ​subdirectores​ in /​tmp​/hdf5 channel junk0\n"​);
system(​"​rm​ -​rf​ /​tmp​/hdf5 ; ​mkdir​ /​tmp​/hdf5 ; ​mkdir​ /​tmp​/hdf5/junk0"​);

​/* ​init​ */
data_object = digital_rf_create_write_hdf5(​"/​tmp​/hdf5/junk0"​, H5T_NATIVE_SHORT,

subdir_cadence, millseconds_per_file, global_start_index, sample_rate_numerator,
sample_rate_denominator, uuid, compression_level, checksum, is_complex, num_subchannels,
is_continuous, marching_periods);

if​ (!data_object)
exit(-1);

​/* write continuous data */
​for​ (i=0; i<7; i++) ​/* writing 700 samples, so should create two ​subdirectories​ (each holds 400

samples) */
{

result = digital_rf_write_hdf5(data_object, vector_leading_edge_index + i*100,
data_short, vector_length);

​if​ (result)
exit(-1);

}

​/* close */
digital_rf_close_write_hdf5(data_object);

printf(​"example done - examine /​tmp​/hdf5 for data\n"​);
​return​(0);

}

C write example with SIGINT handling to remove last file

The following example is similar to the one above, except that it includes a SIGINT handler to
remove the tmp rf file in case of an interrupt. Because signal handlers take no arguments
except the interrupt type, a global string is used to keep track of the last directory being written
to. This example assumes only a single Digital_rf_write_object is being created. If this program
was using multiple instances of Digital_rf_write_object, the global would need to contain
information about the last directory of each instance.

This example differs in four ways:

1. It includes signal.h and unistd.h.
2. It includes an interrupt handler outside of the main method.
3. It declares a global string to track the last directory written,
4. In the main method, there are three lines of code after the write method to update the

global string containing the last directory written to.

Here’s the needed includes:

#include​ ​<signal.h>
#include​ ​<unistd.h>

Here’s the global declaration:

char​ global_last_rf_dir_written[BIG_HDF5_STR]​;

Here’s the interrupt handler:

void​ intHandler(​int​ dummy)
{

​char​ cmd[BIG_HDF5_STR] = ​""​;
sprintf(cmd, ​"​rm​ %s/​tmp​.*"​, global_last_rf_dir_written);
system(cmd);

 exit(-1);
}

Here’s the write call, followed by the code to update the global:

result = digital_rf_write_hdf5(data_object, vector_leading_edge_index + i*100, data_short, vector_length);
/* update global last_rf_dir_written after every call */
local_last_dir_written = digital_rf_get_last_dir_written(data_object);
strcpy(global_last_rf_dir_written, local_last_dir_written);
free(local_last_dir_written); ​/* digital_rf_get_last_dir_written dynamically allocates memory */

Here’s the full interrupt handling example:

/*
 * Simple example of writing Digital RF 2.0 data with C API
 *
 * This simple example writes continuous complex data of short ​ints​,
 * and also removes partially written files when a SIGINT occurs
 *
 * $Id: example_rf_write_hdf5.c 985 2016-02-02 18:35:23Z ​brideout​ $
 */

#include​ ​<signal.h>
#include​ ​<unistd.h>

#include​ ​"digital_rf.h"

/* the following code gives an example of writing a SIGINT handler that deletes the ​tmp​ file being written
 * Note that this assumes a non-threaded application because it uses a global to track the last file
 */

char​ global_last_rf_dir_written[BIG_HDF5_STR];

void​ intHandler(​int​ dummy)
{

​char​ cmd[BIG_HDF5_STR] = "";
sprintf(cmd, "​rm​ %s/​tmp​.*", global_last_rf_dir_written);
system(cmd);

 exit(-1);
}

int​ main (​int​ argc, ​char​ *argv[])
{

​/* local variables */
Digital_rf_write_object * data_object = NULL; ​/* main object created by ​init​ */
uint64_t vector_leading_edge_index = 0; ​/* index of the sample being written starting at zero with

the first sample recorded */
uint64_t global_start_index; ​/* start sample (​unix​ time * sample_rate) of first measurement - set

below */
​int​ i, result;
​char​ * local_last_dir_written; ​/* used for interrupt handler */

​/* dummy ​dataset​ to write */
​short​ data_short[100][2];

​/* writing parameters */
uint64_t sample_rate_numerator = 100; ​/* 100 Hz sample rate - typically MUCH faster */
uint64_t sample_rate_denominator = 1;
uint64_t subdir_cadence = 4; ​/* Number of seconds per ​subdirectory​ - typically longer */
uint64_t millseconds_per_file = 400; ​/* Each ​subdirectory​ will have up to 10 400 ​ms​ files */
​int​ compression_level = 1; ​/* low level of compression */
​int​ checksum = 0; ​/* no checksum */
​int​ is_complex = 1; ​/* complex values */
​int​ is_continuous = 1; ​/* continuous data written */
​int​ num_subchannels = 1; ​/* only one ​subchannel​ */
​int​ marching_periods = 0; ​/* no marching periods when writing */
​char​ uuid[100] = ​"Fake UUID - use a better one!"​;
uint64_t vector_length = 100; ​/* number of samples written for each call - typically MUCH longer

*/

​/* set up signal handling */
signal(SIGINT, intHandler);

​/* ​init​ ​dataset​ */

​for​ (i=0; i<100; i++)
{

data_short[i][0] = 2*i;
data_short[i][1] = 3*i;

}

​/* start recording at global_start_sample */
global_start_index = (uint64_t)(1394368230 * (​long

double​)sample_rate_numerator/sample_rate_denominator) + 1; ​/* should represent 2014-03-09 12:30:30
and 10 milliseconds*/

printf(​"Writing complex short to multiple files and ​subdirectores​ in /​tmp​/hdf5 channel junk0\n"​);
system(​"​rm​ -​rf​ /​tmp​/hdf5 ; ​mkdir​ /​tmp​/hdf5 ; ​mkdir​ /​tmp​/hdf5/junk0"​);

​/* ​init​ */
data_object = digital_rf_create_write_hdf5("/​tmp​/hdf5/junk0", H5T_NATIVE_INT, subdir_cadence,

millseconds_per_file, global_start_index, sample_rate_numerator, sample_rate_denominator, uuid,
compression_level, checksum, is_complex, num_subchannels, is_continuous, marching_periods);

​if​ (!data_object)
exit(-1);

​/* write continuous data */
​for​ (i=0; i<10000; i++)
{

result = digital_rf_write_hdf5(data_object, vector_leading_edge_index + i*100,
data_short, vector_length);

​if​ (result)
exit(-1);

​/* update global last_rf_dir_written after every call */
local_last_dir_written = digital_rf_get_last_dir_written(data_object);
strcpy(global_last_rf_dir_written, local_last_dir_written);
free(local_last_dir_written); ​/* digital_rf_get_last_dir_written dynamically allocates

memory */
​if​ (i % 1000 == 0)

printf("%i of 10000 written\n"​, i);
}

​/* close */
digital_rf_close_write_hdf5(data_object);

printf("example done - examine /​tmp​/hdf5 for data\n"​);
​return​(0);

}

Writing Digital RF data with Python

Python write API description

Digital RF data can also be written using the python digital_rf_hdf5 module. The python API
uses the C write API described above. As with C, there are four method - init, rf_write for
continuous data, rf_write_blocks for blocked data, and close. They are defined below:

Init

class​ write_hdf5_channel:
 ​ """The class write_hdf5_channel is an object used to write Digital RF 2.0 data to Hdf5 files.
 """

 ​def​ __init__(self, directory, dtype_str, subdir_cadence_secs, file_cadence_millisecs,
start_global_index, sample_rate_numerator, sample_rate_denominator, uuid_str, compression_level=​0​,
checksum=​False​, is_complex=​True​, num_subchannels=​1​, is_continuous=​True​, marching_periods=​True​):
 ​ """__init__ creates an write_hdf5_channel

 Inputs:
 directory - the directory where this channel is to be written. Must already exist and be writable

 dtype_str - format of ​numpy​ data in string format. String is format as passed into numpy.dtype().
For example, numpy.dtype('>i4'). For now accepts any legal byte-order character (No character means
native), and one of 'i1', 'u1', 'i2', 'u2', 'i4', 'u4', 'i8', 'u8', 'f', or 'd'.

 subdir_cadence_secs - Number of seconds of data found in one ​subdir​. For example, 3600
subdir_cadence_secs will be saved in each ​subdirectory

 file_cadence_millisecs - number of milliseconds of data per file. Rule: subdir_cadence_secs*1000
% file_cadence_millisecs must equal 0

 start_global_index - the start time of the first sample in units of (unix_timestamp *
(sample_rate_numerator/sample_rate_denominator))

 sample_rate_numerator - ​python​ long or ​int​ giving the sample rate numerator

 sample_rate_denominator - ​python​ long or ​int​ giving the sample rate denominator

 uuid_str - ​uuid​ string that will tie the data files to the Hdf5 ​metadata

 compression_level - 0 for no compression (default), 1-9 for varying levels of ​gzip​ compression (1
least compression, least CPU, 9 most compression, most CPU)

 checksum - if True, use Hdf5 checksum capability, if False (default) no checksum.

 is_complex - if True (the default) data is IQ. If false, each sample has a single value.

 num_subchannels - number of ​subchannels​ to write simultaneously. Default is 1.

 is_continuous - True if data always written in continuous blocks. False if data will be written with
gapped​ blocks. If is_continuous True, checksum False and compression_level 0 (all defaults), fastest
read speed.

 marching_periods - if True, have matching periods written to ​stdout​ when writing. False - do not.
 """

Write continuous data

def​ rf_write(self, arr, next_sample=​None​):
 """rf_write writes a ​numpy​ array to Hdf5. Must have the same number of subchannels as declared
in init. For single valued data, number of columns == number of subchannels. For complex data, there
are two types of input arrays that are allowed:
 1. An array without column names with number of columns = 2*num_subchannels. I/Q are
assumed to be interleaved.
 2. A structured array with column names r and i, as stored in the Hdf5 file. Then the shape will be
N * num_subchannels, because ​numpy​ considered the r/i data as one piece of data.

 Here's an example of one way to create a structured ​numpy​ array with complex data with ​dtype
int16:
 arr_data = numpy.ones((num_rows, num_subchannels), ​dtype​=[('r', numpy.int16), ('i', numpy.int16)])
 for i in range(num_subchannels):
 for j in range(num_rows):
 arr_data[j,i]['r'] = 2
 arr_data[j,i]['i'] = 3

 Inputs - ​arr​ - ​numpy​ array of data of size described above if complex, and size num_rows if not.
Error will be raised if its not the same data type set in ​init​.

 next_sample - global index of next sample to write to. Default is self._next_avail_sample. Error
raised if next_sample < self._next_avail_sample

 Returns: self._next_avail_sample
 """

Write blocked data

 ​def​ rf_write_blocks(self, arr, global_sample_arr, block_sample_arr):
 ​"""rf_write_blocks writes a data with interleaved gaps to Hdf5 files

 Inputs - ​arr​ - ​numpy​ array of data. See rf_write for a complete description.

 global_sample_arr an array ​len​ < N, > 0 of type numpy.uint64 that sets the global sample index
for each continuous block of data in ​arr​. Must be increasing, and first value must be >=
self._next_avail_sample of ValueError raised.

 block_sample_arr an array ​len​ = ​len​(global_sample_arr) of type numpy.uint64. Values are the
index into ​arr​ of each block. Values must be < ​len​(​arr​). First value must be zero. Increments between
value must be > 0 and less than the corresponding increment in global_sample_arr

 Returns: self._next_avail_sample
 """

Debug methods

 ​def​ get_last_file_written(self):
 ​"""get_last_file_written returns the full path to the last file written
 """

 ​def​ get_last_dir_written(self):
 ​ """get_last_dir_written returns the full path to the last directory written
 """

 ​def​ get_last_utc_timestamp(self):
 ​"""get_last_utc_timestamp returns utc timestamp of the time of the last write
 """

Close

 ​def​ close(self):
 ​"""close frees the C object and closes the last Hdf5 file
 """

Python write example

"""example_digital_rf_hdf5.py is a simple example of writing Digital RF with python

Writes continuous complex short data.

$Id: example_digital_rf_hdf5.py 811 2015-09-09 19:14:36Z brideout $
"""
standard python imports
import​ os

third party imports
import​ numpy

Millstone imports
import​ digital_rf_hdf5

writing parameters
sample_rate_numerator = long(​100​) ​# 100 Hz sample rate - typically MUCH faster
sample_rate_denominator =​ ​1
dtype_str = ​'i2'​ ​# short int
sub_cadence_secs = ​4​# Number of seconds of data in a subdirectory - typically MUCH larger
file_cadence_millisecs = ​400​ ​# Each fill will have up to 400 ms of data
compression_level = ​1​ ​# low level of compression
checksum = ​False​ ​# no checksum
is_complex = ​True​ ​# complex values
is_continuous =​ ​True
num_subchannels = ​1​ ​# only one subchannel
marching_periods = ​False​ ​# no marching periods when writing
uuid = ​"Fake UUID - use a better one!"
vector_length = ​100​ ​# number of samples written for each call - typically MUCH longer

create short data in r/i to test using that to write
arr_data = numpy.ones((vector_length,num_subchannels),
 dtype=[(​'r'​, numpy.int16), (​'i'​, numpy.int16)])
for​ i ​in​ range(len(arr_data)):
 arr_data[i][​'r'​] = ​2​*i
 arr_data[i][​'i'​] = ​3​*i

start 2014-03-09 12:30:30 plus one sample
start_global_index = (1394368230 * float(sample_rate_numerator)/sample_rate_denominator) + 1

set up top level directory
os.system(​"rm -rf /tmp/hdf5 ; mkdir /tmp/hdf5"​);

print​(​"Writing complex short to multiple files and subdirectores in /tmp/hdf5 channel junk0"​);
os.system(​"rm -rf /tmp/hdf5/junk0 ; mkdir /tmp/hdf5/junk0"​);

init

data_object = digital_rf_hdf5.write_hdf5_channel(​"/​tmp​/hdf5/junk0"​, dtype_str, sub_cadence_secs,
 file_cadence_millisecs, start_global_index,

 sample_rate_numerator, sample_rate_denominator, uuid,
compression_level,

 checksum, is_complex, num_subchannels, is_continuous,
 marching_periods);

write
for​ i ​in​ range(​7​): ​# will write 700 samples - so creates two subdirectories
 result = data_object.rf_write(arr_data);

close
data_object.close();
print​(​"done test"​);

Reading Digital RF data with Python

Python read API description

The most basic functionality of the read API would include random access to the recorded RF,
while providing guidance to where data exists. All indices in this API refer to unix sample
indices, which is defined as the unix timestamp times the sample rate. Changes of sample rate
from the same RF source must be handled by using different channels or separate experiment
intervals.

class​ read_hdf5:
 """The class read_hdf5 is an object used to read Digital RF 2.0 data from Hdf5 files.
 This class allows random access to the ​rf​ data.

 """
 ​def​ __init__(self, top_level_directory_arg):
 ​"""__init__ will verify the data in top_level_directory_arg is as expected.

 Inputs:
 top_level_directory_arg - either a single top level directory, or a list. A directory can be a file
system path or a url, where the url points to a top level directory. Each must be a local path, or start with
http://, file://, or ftp://

 A top level directory must contain
<channel_name>/<YYYY-MM-DDTHH-MM-SS/rf@<unix_seconds>.<%03i milliseconds>.h5

 If more than one top level directory contains the same channel_name subdirectory, this is
considered the same channel. An error is raised if their sample rates differ, or if their time periods
overlap.

 This method will create the following attributes:

 self._top_level_dir_dict - a dictionary with keys = top_level_directory string, value = access mode
(eg, 'local', 'file', or 'http')

 self._channel_dict - a dictionary with keys = channel_name, and value is a _channel_metadata
object.
 """

def​ get_channels(self):
 """get_channels returns an alphabetically sorted list of channels in this read_hdf5 object
 """

def​ get_bounds(self, channel_name):

"""get_bounds returns a tuple of (first_unix_sample, last_unix_sample) for a given channel name
 “""

def​ get_digital_rf_metadata(self, channel_name, sample=​None​):
 ​ """get_digital_rf_metadata returns a dictionary of ​metadata​ recorded as a standard part of digital ​rf​.

 If sample is None (the default), returns the 15 ​metadata​ attributes stored in the top level metadata.h5
file, and
 this ​metadata​ applies to all data. If sample is given, then those 15 ​metadata​ attributes are returned,
along
 with 4 additional ones that can vary from file to file. If no data file is found associated with the input
 sample, then an IOError is raised.

 The 15 ​metadta​ attributes always returned are:

 1. ​int​ H5Tget_class (result of H5Tget_class(hdf5_data_object->hdf5_data_object)
 2. ​int​ H5Tget_size (result of H5Tget_size(hdf5_data_object->hdf5_data_object)
 3. ​int​ H5Tget_order (result of H5Tget_order(hdf5_data_object->hdf5_data_object)
 4. ​int​ H5Tget_precision (result of H5Tget_precision(hdf5_data_object->hdf5_data_object)
 5. ​int​ H5Tget_offset (result of H5Tget_offset(hdf5_data_object->hdf5_data_object)
 6. ​int​ subdir_cadence_secs,
 7. ​int​ file_cadence_millisecs
 8. ​int​ sample_rate_numerator
 9. ​int​ sample_rate_denominator
 10. ​int​ is_complex
 11. ​int​ num_subchannels
 12. ​int​ is_continuous
 13. string epoch - start time at sample 0 (always 1970-01-01 UT midnight)
 14. string digital_rf_time_description
 15. string digital_rf_version

 The 4 additional ​metadata​ attributes returned when sample is not None are:

 1. ​int​ sequence_num (incremented for each file)
 2. ​int​ init_utc_timestamp (changes at each restart of the recorder - needed if leap seconds
correction applied)
 3. ​int​ computer_time (time of initial file creation)
 4. string uuid_str - set independently at each restart of the recorder
 """

def​ get_digital_metadata(self, channel_name, top_level_dir=​None​):
 ​"""get_digital_metadata returns a digital_metadata.read_digital_metadata object associated with
channel_name.

 Assumes digital_metadata is written under one of the top_leve_directories under the directory
<channel_name>/metadata. If no such directory exists, raises an IOError. Will return the first
digital_metadata object found in the top_level_directory_arg list if more than one, unless optional
argument top_level_dir given to choose one from among the list.
 """

def​ get_continuous_blocks(self, start_sample, end_sample, channel_name):
 ​"""get_continuous_blocks returns an OrderedDict, where the keys are the start sample of each
continuous block found between start_sample and end_sample for the channel given, and values the
length of continuous data.

 Very similar to read, except lengths of arrays used instead of arrays themselves
 """

def​ read(self, start_sample, end_sample, channel_name, sub_channel=​None​):
 """read is the basic read method of Digital RF. It returns an OrderedDict, where the keys are the
start sample of each continuous block found between start_sample and end_sample, (inclusive) and
values of numpy arrays of continuous data that start at the key, and the type matches that of the hdf5 file
rf_data dataset.

 If sub_channel is not None, then return only the selected sub_channel (int) (starts at 0)
 """

 ​def​ ​read_vector(self, unix_sample, vector_length, channel_name, sub_channel=None):
 """read_vector returns a numpy vector of complex8 type, no matter the dtype of the Hdf5 file or the
number of channels. Shape is (vector_length, num_subchannels). Single value (real) files will have the
imaginary part set to zero.

 Calls read, then converts result.

 Inputs:
 unix_sample - the number of samples since 1970-01-01 at start of data

 vector_length - the number of continuous samples to include

 channel_name - the channel name to use

 sub_channel - if not None, then return only the selected sub_channel (int) (starts at 0).
 If None (the default) return all channels

 This method will raise an IOError error if the returned vector would include any missing data.
 """

def​ ​read_vector_raw(self, unix_sample, vector_length, channel_name):
 """read_vector_raw returns a numpy array of dim(up to num_samples, num_subchannels) of the
dtype in the Hdf5 files.

 If complex data, real and imag data will have names 'r' and 'i' if underlying data are integers or be
numpy complex data type if underlying data floats.

 Inputs:
 unix_sample - the number of samples since 1970-01-01 at start of data

 vector_length - the number of continuous samples to include

 channel_name - the channel name to use

 This method will raise an IOError error if the returned vector would include any missing data.
 """

 ​def​ ​read_vector_c81d(self, unix_sample, vector_length, channel_name, subchannel=0):
 """read_vector_c81d returns a numpy vector of complex8 type, no matter the dtype of the Hdf5 file or
the number of channels. Error thrown if subchannel doesn't exist.

 Inputs:
 unix_sample - the number of samples since 1970-01-01 at start of data

 vector_length - the number of continuous samples to include

 channel_name - the channel name to use

 subchannel - which subchannel to use. Default is 0 (first)

 This method will raise an IOError error if the returned vector would include any missing data.
 """

 ​def​ get_last_write(self, channel_name):
 """get_last_write returns a tuple of 1. timestamp of last file written, and 2. full path
 to last file written for a given input channel. Both will be None if no data.
 """

Python read example

"""example_digital_rf_hdf5.​py​ is an example script using the digital_rf_hdf5 module

Assumes one of the example Digital RF scripts has already been run (C: example_rf_write_hdf5, or
Python​: example_digital_rf.py)

$Id: example_read_digital_rf.py 1292 2017-03-08 20:48:30Z ​brideout​ $
"""

Millstone imports
import​ digital_rf_hdf5

testReadObj = digital_rf_hdf5.read_hdf5([​'/​tmp​/hdf5​'​])
channels = testReadObj.get_channels()
if​ len(channels) == ​0​:
 ​raise​ IOError, ​"""Please run one of the example write scripts
 C: example_rf_write_hdf5, or ​Python​: example_digital_rf_hdf5.​py
 before running this example"""
print​(​'found channels: %s'​ % (str(channels)))

print​(​'working on channel junk0'​)
start_index, end_index = testReadObj.get_bounds(​'junk0'​)
print​(​'get_bounds returned %i - %i'​ % (start_index, end_index))
cont_data_arr = testReadObj.get_continuous_blocks(start_index, end_index, ​'junk0'​)
print​(​'The following is a OrderedDict of all continuous block of data in (start_sample, length) format: %s'​ %
(str(cont_data_arr)))

read data - the first 3 reads of four should succeed, the fourth read will be beyond the available data
start_sample = cont_data_arr.keys()[​0​]
for​ i ​in​ range(​4​):
 ​try​:
 result = testReadObj.read_vector(start_sample, ​200​, ​'junk0'​)
 ​print​(​'read number %i got %i samples starting at sample %i'​ % (i, len(result), start_sample))

 start_sample += ​200
 ​except​ IOError:
 ​print​(​'Read number %i went beyond existing data and raised an IOError'​ % (i))

finally, get all the built in ​rf​ ​metadata
rf_dict = testReadObj.get_digital_rf_metadata(​'junk0'​)
print​(​'Here is the ​metadata​ built into metadata.h5 (valid for all data): %s' ​% (str(rf_dict)))

Recovering a lost metadata.h5 file

If a Digital RF channel accidently loses its top level metadata.h5 file, it can be recovered as long
as the channel still contains fr data files. The digital_rf_hdf5 module contains the method:

def​ recreate_metadata_file(channel_dir):
 ​ """recreate_metadata_file is a help method that users can create if they have accidently lost the top
level metadata.h5 file. It works by reading that ​metadata​ from one of the ​rf​ data files.

 Inputs: channel_dir - directory with ​rf​ ​subdirectories​ in the form YYYY-MM-DDTHH-MM-SS but without
a metadata.h5 file

 Returns: None

 Affects: creates metadata.h5 file in channel_dir

 1. ​int​ H5Tget_class (result of H5Tget_class(hdf5_data_object->hdf5_data_object)
 2. ​int​ H5Tget_size (result of H5Tget_size(hdf5_data_object->hdf5_data_object)
 3. ​int​ H5Tget_order (result of H5Tget_order(hdf5_data_object->hdf5_data_object)
 4. ​int​ H5Tget_precision (result of H5Tget_precision(hdf5_data_object->hdf5_data_object)
 5. ​int​ H5Tget_offset (result of H5Tget_offset(hdf5_data_object->hdf5_data_object)
 6. ​int​ subdir_cadence_secs,
 7. ​int​ file_cadence_millisecs
 8. ​int​ sample_rate_numerator
 9. ​int​ sample_rate_denominator
 10. ​int​ is_complex
 11. ​int​ num_subchannels
 12. ​int​ is_continuous
 13. string epoch - start time at sample 0 (always 1970-01-01 UT midnight)
 14. string digital_rf_time_description
 15. string digital_rf_version
 """

Example usage:

import​ digital_rf_hdf5

assume the channel ​subdirectory​ /​tmp​/hdf5/junk0 no longer has a metadata.h5 file

digital_rf_hdf5.recreate_metadata_file(​'/​tmp​/hdf5/junk0'​)

Reading Digital RF data with Matlab

Matlab read API description

classdef​ DigitalRFReader
 ​% class DigitalRFReader allows easy read access to static Digital RF data
 ​% See testDigitalRFReader.m for usage, or run <doc DigitalRFReader>
 ​%
 ​% $Id: DigitalRFReader.m 970 2016-01-20 20:52:27Z brideout $

 ​methods
 ​function​ reader = DigitalRFReader(topLevelDirectories)
 ​% DigitalRFReader is the contructor for this class.
 ​% Inputs - topLevelDirectories - a char array of one or more
 ​% top level directories, where a top level directory holds
 ​% channel directories

 ​% topLevelDirectories - a char array of one or more top level
 ​% directories.

 ​function​ channels = get_channels(obj)
 % get_channels returns a cell array of channel names found
 ​% Inputs: None

 ​function​ [lower_sample, upper_sample] = get_bounds(obj, channel)
 % get_bounds returns the first and last sample in channel.
 ​% sample bounds are in samples since 0 seconds unix time
 ​% (that is, unix time * sample_rate)

 ​function​ [data_map] = read(obj, channel, start_sample, end_sample, subchannel)
 % read returns a containers.Map() object containing key= all
 ​% first samples of continuous block of data found between
 ​% start_sample and end_sample (inclusive). Value is an array

 ​% of the type stored in /rf_data. If subchannel is 0, all
 ​% channels returned. If subchannel == -1, length of continuous
 ​% data is returned instead of data, Else, only subchannel set
 ​% by subchannel argument returned.

 ​function​ subdir_cadence_secs = get_subdir_cadence_secs(obj, channel)
 % get_subdir_cadence_secs returns subdir_cadence_secs for given channel

 ​function​ file_cadence_millisecs = get_file_cadence_millisecs(obj, channel)
 % get_file_cadence_millisecs returns file_cadence_millisecs for given channel

 ​function​ samples_per_second = get_samples_per_second(obj, channel)
 % get_samples_per_second returns samples_per_second for given channel

 ​function​ is_complex = get_is_complex(obj, channel)
 % get_is_complex returns is_complex (1 or 0) for given channel

 ​function​ num_subchannels = get_num_subchannels(obj, channel)
 % get_num_subchannels returns num_subchannels (1 or greater) for given channel

 ​function​ vector = read_vector(obj, channel, start_sample, sample_length)
 % read_vector returns a data vector sample_length x num_subchannels.
 ​% Data type will be complex if data was complex, otherwise data type
 ​% as stored in same format as in Hdf5 file. Raises error if
 ​% data gap found. Simply calls read for all channels, and
 ​% throws error if more than one block returned.

Reading Digital RF data with Matlab example

% example usage of DigitalRFReader.m
% Requires python test_digital_rf_hdf5.py be run first to create test data
top_level_directories = char(​'/tmp/hdf5'​, ​'/tmp/hdf52'​);
reader = DigitalRFReader(top_level_directories);
disp(reader.get_channels());

disp(​'First test is reading gappy data'​);
[lower_sample, upper_sample] = reader.get_bounds(​'junk4.1'​);
disp([lower_sample, upper_sample]);
disp(reader.get_subdir_cadence_secs(​'junk4.1'​));
disp(reader.get_file_cadence_millisecs(​'junk4.1'​));
disp(reader.get_samples_per_second(​'junk4.1'​));

disp(reader.get_is_complex(​'junk4.1'​));
disp(reader.get_num_subchannels(​'junk4.1'​));

disp(​'Read data itself - channel 2'​);
gap_arr = reader.read(​'junk4.1'​, lower_sample, upper_sample, 2);
keys = gap_arr.keys();
for​ i = 1:3
 key = keys{i}
 gap_arr(key)
end

disp(​'Now just get block lengths'​);
gap_arr = reader.read(​'junk4.1'​, lower_sample, upper_sample, -1);
keys = gap_arr.keys();
for​ i = 3
 key = keys{i}
 gap_arr(key)
end

Appendix - Technical discussions

Leap seconds

We deal with samples since 1970. This can be mapped uniquely to international atomic time
without leap seconds. If leap seconds are needed, in order to align the recording with unix
seconds (UTC), the user needs to deal with this in some way. This can be done by adjusting the
global sample count since 1970 to align global sample count to UTC. The file write and read
APIs is somewhat agnostic of this, although using UTC might encounter some special cases
when reading data (eg., starting sampling on a leap second results in ambiguous timing, which
probably can be resolved by comparing sample indices to computer timestamps).

If a leap second occurs during a recording, which uses UTC timebase for global sample indices,
there will be a one second offset in the file names after the leap second, until sampling is
restarted. Anyone that cares about this issue will be aware of it and can deal with it in any way
necessary. Again, in order to avoid leap seconds, a timebase without leap seconds should be
used.

In either way, leap seconds do not cause any catastrophic problems for us. There is no data
loss associated with leap seconds.

VDIF & VITA 49 (Digital IF ; ANSI)

Why not use an existing format, such as VDIF [1] or the ANSI VITA 49 Digital IF standard? Why
invent yet another format? Many core concepts of Digital RF are not very dissimilar to those of
VDIF or VITA 49. Channels can be easily translated to threads, and the omnipresent
timestamps in Digital RF are also an essential part of these formats. VDIF actually has a slightly
more flexible way of organizing channels, as multiple channels can be in a thread, as long as
they have the same format and sample rate. Some of the different number formats are also
allowed by VDIF and VITA 49.

The main difference is that these formats are packet oriented, where each atom of data tightly
conforms to a certain set of rules that allow packetizing the data in finite sized packets of data,
which are suited for FPGA processing and potentially lossy transport over a network. This
nature of the format by necessity restricts the amount of metadata that can be associated with
the data in an atomic unit. Digital RF is a file oriented format, with more flexibility on what
metadata can be associated with the data atoms. Files are also self-contained, ie., their format
can be deduced from information contained within the file itself. For this functionality, we rely on
an established data interchange format called HDF5.

Digital RF is random access by nature, allowing fast random access to any channel and point in
time data stored on disk. It is possible to build this functionality to access packets stored on disk
too, so this is not a major difference. It is also possible to configure Digital RF in a way that
allows easy translation of the data stored in the files into a packetized format, such as VDIF or
the LOFAR format, but this requires adhering to additional rules on how to use the format.
Packetized formats prevents the user from coming up with a configuration that cannot be
efficiently packetized and impose specific realtime metadata requirements which may or may
not be sufficient for specific processing.

Digital RF is at its best in an interpreted language environment with high level libraries for
reading data (= Python or Matlab), whereas VDIF is more at home on FPGAs or C, where
simply casting bytes in memory into a fixed struct will parse the data. Thus, a lower level of
expertise is needed to work with Digital RF. Again, an interpreted language reader can be made
to access VDIF files easily, and similarly, a easy to use low level read API can also be made to
access Digital RF.

Digital RF supports more robust and extensible metadata contained with the voltage data. This
is necessary to provide context for data to enable reuse over longer time scales and by multiple
users who did not participate in the original data acquisition. Additionally it enables signal
processing that transforms voltages to voltages to provide some documentation of the
processing associated the transform in the output stream. This is necessary for processing
traceability.

In the end, the differences are subtle. The main difference is that Digital RF relies on a widely
used and standardized data interchange format HDF5 and with greater metadata support.
VITA49 is an ANSI standard with general suitability for realtime stream processing but moderate
implementation complexity. VDIF is custom binary format, designed for a specific purpose, with
relatively simple FPGA or C code implementation. The fact that there are not many differences
is good for interoperability, as data can be translated easily between formats.

Justifying the differences in the formats comes down specifically to the use cases involved. For
Digital RF we anticipate use in voltage level processing and archival of data from large scale
instrument arrays which can be subsequently processed and analyzed over long time scales
(i.e. decades) by multiple users who are often disconnected from the original data acquisition.
General purpose computing will be used and additional metadata will enable greater automation
of processing workflows, improved traceability of software based signal processing, and the
potential for multiple processing workflows to transparently use the same source data.

[1] ​http://vlbi.org/vdif/docs/2009.06.25_Whitney_e-VLBI_wkshop-Madrid.pdf

http://vlbi.org/vdif/docs/2009.06.25_Whitney_e-VLBI_wkshop-Madrid.pdf

