/** \page tsttrpds Optimizing with Trust-Region Parallel Direct Search (TRPDS)
TRPDS combines the inherent parallelism in PDS with the fast
convergence properties of Newton methods. The controlling framework is
identical to the standard trust-region algorithm, but the PDS
algorithm is used to solve the trust-region subproblem.
In this example, we highlight the steps needed to take advantage of
parallel capabilities and to set up TRPDS. Further information and
examples for setting up and solving a problem can be found in the Setting up and Solving an Optimization Problem
section
First, include the header files and subroutine declarations.
\code
#ifdef HAVE_CONFIG_H
#include "OPT++_config.h"
#endif
#include
#include
#include
#ifdef HAVE_STD
#include
#else
#include
#endif
#ifdef WITH_MPI
#include "mpi.h"
#endif
#include "NLF.h"
#include "NLP2.h"
#include "BoundConstraint.h"
#include "CompoundConstraint.h"
#include "OptConstrQNewton.h"
#include "tstfcn.h"
#include "ioformat.h"
using NEWMAT::ColumnVector;
using std::cerr;
using namespace OPTPP;
void SetupTestProblem(string test_id, USERFCN0 *test_problem,
INITFCN *init_problem);
void update_model(int, int, ColumnVector) {}
\endcode
|
After an argument check, initialize MPI. This does not need to be
done within an "ifdef", but if you want the option of also building a
serial version of your problem, then it should be. (Note: An argument
check is used here because this example is set up to work with
multiple problems. Such a check is not required by OPT++.)
\code
int main (int argc, char* argv[])
{
if (argc != 3) {
cout << "Usage: tsttrpds problem_name ndim\n";
exit(1);
}
#ifdef WITH_MPI
int me;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
#endif
#endif
\endcode
|
Define the variables.
\code
int ndim;
double time0, opt_time;
USERFCN0 test_problem;
INITFCN init_problem;
string test_id;
// Setup the test problem
// test_problem is a pointer to the function (fcn) to optimize
// init_problem is a pointer to the function that initializes fcn
// test_id is a character string identifying the test problem
test_id = argv[1];
ndim = atoi(argv[2]);
SetupTestProblem(test_id, &test_problem, &init_problem);
\endcode
|
Now set up the output file. If you are running in parallel, you may
want to designate an output file for each processor. Otherwise, the
output from all of the processors will be indiscriminantly intertwined
in a single file. If the function evaluation does any file I/O, you
should set up a working directory for each processor and then have the
each process chdir (or something comparable) into its corresponding
directory. Each working directory should have a copy of the input
file(s) needed by the function evaluation. If the function evaluation
requires file I/O and working directories are not used, the function
evaluation will not work properly.
\code
char status_file[80];
strcpy(status_file,test_id.c_str());
#ifdef WITH_MPI
sprintf(status_file,"%s.out.%x", status_file, me);
#else
strcat(status_file,".out");
#endif
\endcode
|
Set up the problem.
\code
// Build a CompoundConstraint object
ColumnVector bound(ndim );
bound = -500.0;
Constraint bc = new BoundConstraint(ndim,bound);
// Create an OptppArray of Constraints
OptppArray arrayOfConstraints;
arrayOfConstraints.append(bc);
// Create a compound constraint
CompoundConstraint constraints(arrayOfConstraints);
// Create a constrained Nonlinear problem object
FDNLF1 nlp(ndim,test_problem, init_problem, &constraints);
nlp.setIsExpensive(true);
\endcode
|
Set up a TRPDS algorithm object. TRPDS is a Newton-based method, so
it is constructed as a Newton object with a search strategy of
TrustPDS. Since it is a blend of two algorithms (Newton and PDS),
algorithmic parameters can both be set even though it is all done
within the context of the Newton object.
\code
OptConstrQNewton objfcn(&nlp,update_model);
if (!objfcn.setOutputFile(status_file, 0))
cerr << "main: output file open failed" << endl;
ostream* optout = objfcn.getOutputFile();
*optout << "Test problem: " << test_id << endl;
*optout << "Dimension : " << ndim << endl;
objfcn.setSearchStrategy(TrustPDS);
objfcn.setSSSS(256);
\endcode
|
Optimize and clean up.
\code
time0 = get_wall_clock_time();
objfcn.optimize();
opt_time = get_wall_clock_time() - time0;
*optout << "wall clock time =" << e(opt_time,12,4) << endl;
objfcn.printStatus("Solution from quasi-newton");
objfcn.cleanup();
\endcode
|
Finally, it is necessary to shut down MPI.
\code
#ifdef WITH_MPI
MPI_Finalize();
#endif
}
\endcode
|
Next Section: Generating Set Search Methods | Back to Main Page
Last revised September 14, 2006 .
*/