/** \page tstpds Optimizing with a Parallel Direct Search Method OptPDS is an implementation of a derivative-free algorithm for unconstrained optimization. The search direction is driven solely by function information. In addition, OptPDS is easy to implement on parallel machines. In this example, we highlight the steps needed to take advantage of parallel capabilities and to set up PDS. Further information and examples for setting up and solving a problem can be found in the Setting up and Solving an Optimization Problem section First, include the header files and subroutine declarations.
\code #ifdef HAVE_CONFIG_H #include "OPT++_config.h" #endif #include #include #include #ifdef HAVE_STD #include #else #include #endif #ifdef WITH_MPI #include "mpi.h" #endif #include "OptPDS.h" #include "NLF.h" #include "CompoundConstraint.h" #include "BoundConstraint.h" #include "OptppArray.h" #include "cblas.h" #include "ioformat.h" #include "tstfcn.h" using NEWMAT::ColumnVector; using NEWMAT::Matrix; using namespace OPTPP; void SetupTestProblem(string test_id, USERFCN0 *test_problem, INITFCN *init_problem); void update_model(int, int, ColumnVector) {} \endcode
After an argument check, initialize MPI. This does not need to be done within an "ifdef", but if you want the option of also building a serial version of your problem, then it should be. (Note: An argument check is used here because this example is set up to work with multiple problems. Such a check is not required by OPT++.)
\code int main (int argc, char* argv[]) { if (argc != 3) { cout << "Usage: tstpds problem_name ndim\n"; exit(1); } #ifdef WITH_MPI int me; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &me); #endif \endcode
Define the variables.
\code int i, j; int ndim; double perturb; static char *schemefilename = {"myscheme"}; USERFCN0 test_problem; INITFCN init_problem; string test_id; test_id = argv[1]; ndim = atoi(argv[2]); ColumnVector x(ndim); ColumnVector vscale(ndim); Matrix init_simplex(ndim,ndim+1); // Setup the test problem // test_problem is a pointer to the function (fcn) to optimize // init_problem is a pointer to the function that initializes fcn // test_id is a character string identifying the test problem SetupTestProblem(test_id, &test_problem, &init_problem); \endcode
Now set up the output file. If you are running in parallel, you may want to designate an output file for each processor. Otherwise, the output from all of the processors will be indiscriminantly intertwined in a single file. If the function evaluation does any file I/O, you should set up a working directory for each processor and then have the each process chdir (or something comparable) into its corresponding directory. Each working directory should have a copy of the input file(s) needed by the function evaluation. If the function evaluation requires file I/O and working directories are not used, the function evaluation will not work properly.
\code char status_file[80]; strcpy(status_file,test_id.c_str()); #ifdef WITH_MPI sprintf(status_file,"%s.out.%d", status_file, me); #else strcat(status_file,".out"); #endif \endcode
Set up the problem.
\code // Create an OptppArray of Constraints OptppArray arrayOfConstraints; // Create an EMPTY compound constraint CompoundConstraint constraints(arrayOfConstraints); // Create a constrained Nonlinear problem object NLF0 nlp(ndim,test_problem, init_problem, &constraints); \endcode
Set up a PDS algorithm object. Some of the algorithmic parameters are common to all OPT++ algorithms.
\code OptPDS objfcn(&nlp); objfcn.setOutputFile(status_file, 0); ostream* optout = objfcn.getOutputFile(); *optout << "Test problem: " << test_id << endl; *optout << "Dimension : " << ndim << endl; objfcn.setFcnTol(1.49012e-8); objfcn.setMaxIter(500); objfcn.setMaxFeval(10000); \endcode
Other algorithmic parameters are specific to PDS. Here we set the size of the search pattern to be considered at each iteration, the scale of the initial simplex. We explicitly define the initial simplex here, but there are also built-in options. Finally, we tell the algorithm that we need to create a scheme file that contains the search pattern, and we give it the name of the file (one of the variables defined above).
\code objfcn.setSSS(256); vscale = 1.0; objfcn.setScale(vscale); x = nlp.getXc(); for (i=1; i <= ndim; i++) { for (j=1; j <= ndim+1; j++) { init_simplex(i,j) = x(i); } } for (i=1; i<= ndim; i++) { perturb = x(i)*.01; init_simplex(i,i+1) = x(i) + perturb; } objfcn.setSimplexType(4); objfcn.setSimplex(init_simplex); objfcn.setCreateFlag(); objfcn.setSchemeFileName(schemefilename); \endcode
Optimize and clean up.
\code objfcn.optimize(); objfcn.printStatus("Solution from PDS"); objfcn.cleanup(); \endcode
Finally, it is necessary to shut down MPI.
\code #ifdef WITH_MPI MPI_Finalize(); #endif } \endcode

Next Section: Trust-Region with Parallel Direct Search | Back to Parallel Optimization

Last revised September 14, 2006 . */