
Table of Contents
1. A session at a glance

1.1 A basic yao session
1.2 The Basics

2. The Parameter File
3. Controlling features

3.1 Overall Geometry
3.2 Pupil
3.3 Wavefront Sensors
3.4 Deformable Mirrors
3.5 Other Features

4. Yao structures
5. Scripting and Hacking Yao

5.1 Scripting
5.2 Hacking yao

yao::manual

This manual is for yao v4.5.0. It was almost entirely re-written from
previous versions.

Written by Francois Rigaut on November 2009. Expand/Collapse all
detailled comments.

1. A session at a glance...

1.1 A basic yao session

... consist of a few steps:

Craft up a parameter file describing the system you want to model,
say "mysystem.par"

1.

Start yorick/yao2.
aoread,"mysystem.par"3.
aoinit,some keywords...4.
aoloop,some keywords...5.
go6.

Let us now enter into some details.

1.2 The Basics

Is yorick installed ? All set up as per the installation instructions ? Then go to the examples directory of the yao
distribution; this might be in different locations depending on how you installed yao. To determine where is it is,
run the command find_examples_path() within yao. Type the following at the unix prompt:

poliahu:~ $ yorick -i yao.i
 Copyright (c) 2005. The Regents of the University of California.
 All rights reserved. Yorick 2.1.05x ready. For help type 'help'
 Yao version 4.5.0, Last modified 2009oct23
>

You get the yorick and yao welcome messages and the yorick prompt. Alternatively, you can start a normal yorick
session and then include yao at any time by typing:

> #include "yao.i"

You can double check everything is normal by typing:

> info,aoread
func aoread(parfile)

if you get this message, you are in business. If not, fix your yorick installation. Click here to show/hide notes on
Yorick.

At this point it might be worth to mention that yorick, in its basic mode, does not have line recall or line editing
capabilities. You can get that very easily into emacs, by installing yorick.el and yorick-auto.el in your emacs
file/directory (if you installed yorick with the debian/ubuntu package manager, yorick.el should already be
installed). See the instructions on top of yorick-#.#/emacs/yorick.el on how to do that. It's not complicated,

1 of 22

and worth every second you invest in this 5mn installation. An alternative, that I personally use, is to run
yorick within rlwrap, a wrapper of readline. rlwrap provides command recall, filename completion, main
command completion, and history from session to session. Just install rlwrap and define yorick as an alias:

alias yorick='rlwrap -s 2000 -c -f ~/.yorick/yorick.commands yorick'

or something equivalent. See the rlwrap man pages for more details.
Soon, you will need to know more about yorick and its syntax. The yorick manual is in Y_HOME/doc/yorick.pdf. A
short help is at Y_HOME/doc/refs.pdf (Y_HOME, as well as Y_SITE and Y_USER, are yorick variables, get them at the
yorick prompt).

The first thing to do is to create phase screens (to simulate turbulence). Type

> create_phase_screens,2048,256,prefix="screen"

This will create N (N=long dimension/short dimension, 8 in that case) phase screens of dimension 2048x256
suitable for use by yao. It is advised to choose dimensions that are powers of 2. Depending on your platform and
CPU, it may take some time (1mn or so), as this routine is absolutely not optimized. This is a one shot run. You will
not need to do that everytime you run yao, as you can, and are encouraged, to use the same phase screens. You
may need to run it once more to create larger phase screens if the need arises, but that's about it. The phase
screens (screen1.fits to screen8.fits in the example above) will be created in the current working directory. Move
them somewhere convenient (I have them in Y_USER/data=.yorick/data in my case). You will need to edit the yao
parameter files to reflect the path and names of these phase screens if you put it somewhere different or used a
different name (look for "atm.screen" in the parfile).

Next, we will try to run "sh6x6", which is a simple 6x6 Shack-Hartmann example. After you have edited the
"sh6x6.par" file (in the examples directory) and modified the path and filename of the newly created phase screens,
if needed, type:

> aoread,"sh6x6.par"
Yao, Version 4.5.0, 2009oct23
Checking parameters ...
No field stop defined for wfs 1. Setting to 'square'
wfs(1).fssize has not been set, will be forced to subap FoV
dm(1).coupling set to 0.200000
dm(1).iffile set to sh6x6-if1.fits
dm(2).iffile set to sh6x6-if2.fits
OK
>

What aoread() does is (a) read, or rather include, the parameter file, which will fill the various structures containing
the definitions of the WFS, DM, loop, etc... and (b) go through a simple check of the parameters to see if anything
is missing or if there are incompatible assigments, in which case it will print out an error message (hopefully
understandable). Otherwise, it prints out informational messages or warnings.

Then we need to initialize the system. aoinit() will do that for us. It will initialize all the arrays (pupil, etc), initialize
the system pupil, the various WFS, DM, etc. It will then compute the interaction matrix, invert it and finally plot (if
requested) a graphical system configuration. The amount of information you get during the aoinit is set by
sim.verbose. The default verbose in sh6x6.par is 0, which means you get no feedback at all except for warnings and
error messages. Let's set sim.verbose to 1 and run aoinit():

> sim.verbose=1
> aoinit,disp=1,clean=1
Checking parameters ...
OK

> INITIALIZING PHASE SCREENS
Reading phase screen "~/.yorick/data/screen1.fits"
Reading phase screen "~/.yorick/data/screen2.fits"
Reading phase screen "~/.yorick/data/screen3.fits"
Reading phase screen "~/.yorick/data/screen4.fits"

> INITIALIZING SENSOR GEOMETRY
Kernel FWHM for the iMat calibration = 0.364983
Pre-computing Kernels for the SH WFS
 WFS# | Pixel sizes | Subap. size | Number of pixels | #photons
 | Desired Quantum Actual | Max Actual | Desired Actual | /sub/iter

2 of 22

 1 0.20000 0.03182 0.19093 2.04 1.91 10x10 10x10 70735.5
NGS#1 flux varies between 42795 and 70736 photon/subap/it

> Initializing DM influence functions
 >> Computing Influence functions for mirror # 1

Creating Influence function for actuator #1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49

 >> Storing influence functions in sh6x6-if1.fits... Done
 >> Computing Influence functions for mirror # 2

 >> Storing influence functions in sh6x6-if2.fits... Done

> DOING INTERACTION MATRIX
 DM #1: # of valid actuators: 45. (I got rid of 4 actuators after iMat)
 >> valid I.F. stored in sh6x6-if1.fits
Computing valid to extrap. matrix for DM#1

> INITIALIZING MODAL GAINS
I did not find simulModeGains.fits or it did not have the right
 number of elements (should be 47), so I have generated
 a modal gain vector with ones in it.

> INTERACTION AND COMMAND MATRICES
 >> Preparing SVD and computing command matrice
Smallests 2 normalized eigenvalues = 0.014315 1.62232e-07
4 modes discarded in the inversion

Summary:
Mirror #1, stackarray, 45 actuators, conjugated @ 0 m
Mirror #2, tiptilt, 2 actuators, conjugated @ 0 m
WFS # 1, hartmann (meth. 2), 32 subap., offaxis (+0.0",+0.0"), noise enabled
D/r0 (500nm) = 42.4; 5000 iterations
>

At this point you have initialized everything. The aoinit() keyword clean indicates that you want to start from
scratch, and ignore any influence function or interaction/command matrix files on your disk. The disp=1 is to get
some graphical feedback. You are now ready to run the loop:

> loop.niter = 1000
> aoloop,disp=10
NGS#1 flux varies between 42795 and 70736 photon/subap/it

> Starting loop with 1000 iterations
> go
 Iter# Inst.Strehl Long expo.Strehl Time Left
 1 0.000 0.000 00:00:18.8
 51 0.407 0.393 00:00:15.1
 101 0.412 0.410 00:00:13.7
 [...]
 901 0.647 0.504 00:00:01.4
 951 0.546 0.507 00:00:00.7
Saving results in /home/frigaut/yorick-2.1/share/yao/examples/sh6x6.res (ps,imav.fits)...
time(1-2) = 9.49 ms (WF sensing)
time(2-3) = 0.03 ms (Reset and measurement history handling)
time(3-4) = 0.01 ms (cMat multiplication)
time(4-5) = 1.85 ms (DM shape computation)
time(5-6) = 1.44 ms (Target PSFs estimation)
time(6-7) = 1.53 ms (Displays)
time(7-8) = 0.05 ms (Circular buffers, end-of-loop printouts)
Finished on 00:26:30
69.040800 iterations/second in average

 lambda XPos YPos FWHM[mas] Strehl E50d[mas] #modes comp.
Star# 1 1.65 0.0 0.0 44.1 0.507 172.0 35.1
Field Avg 1.65 44.1 0.507 172.0
Field rms 0.0 0.000 0.0
>

3 of 22

You have ran 1000 iterations (loop.niter in sh6x6.par is larger so we changed it before starting the loop in the
example above to keep your demo time reasonable). disp=10 in the call means "do your displays every 10
iterations". Depending on your graphic card, displays can be pretty expensive (time), thus it helps to display less
frequently.

At any time, while the loop is running, you have access to the yorick prompt. You can type regular commands, but
the most useful are:

stop which will pause the execution of the loop,
cont which will resume the loop where it paused,
reset which will reset commands and dm shape,
restart which will restart from iteration 1.

at the completion of the requested number of iterations, go() will automatically call the function after_loop(), which
outputs a number of things as shown above (starting from "Saving results..."): Some statistics on execution time
and number of iterations per seconds, and the Strehl, FWHM, etc, on every "target" for which positions were
specified in the parameter file. You can call after_loop() by hand at any time also, and you can call it multiple
times.

The resulting average images have been saved on disk ("sh6x6-imav.fits"), together with a small postscript file
("sh6x6.ps") that contains some graphics. Strehl, FWHM and 50 percent encircled energy are available as extern
variables under the name strehl, fwhm and e50 (the averaged PSFs are also available, together with the history of
DM commands, DM errors and WFS measurements if the keyword savecb= has been set):

> strehl
[[0.434317]]

These variables contains the values for all the images (here there is only one, but there can be an arbitrary number
of positions and wavelengths at which you want to estimate the performance). This can be useful in script, as
detailled below.

Finally, note that you can have access to some documentation on each function by typing help,function_name, e.g:

> help, aoinit
 /* DOCUMENT aoinit(disp=,clean=,forcemat=,svd=,dpi=,keepdmconfig=)
 Second function of the ao serie.
 Initialize everything in preparation for the loop (aoloop).
 Follows a call to aoread, parfile.

 disp = set to display stuff
 clean = if set, aoinit will start fresh. *Nothing* is kept from
[...]

Tip: sometimes the document section of a function is not up to date. You can get a peek on the actual function API
by using info:

> info, aoinit
func aoinit(disp=,clean=,forcemat=,svd=,dpi=,keepdmconfig=)

2. The Parameter File

Here is an example of a parameter file (parfile). Comments below.

// YAO parameter file
//-------------------------------
sim.name = "SH6x6 w/ TT mirror and WFS, full diffraction WFS";
sim.pupildiam = 120;
sim.debug = 0;
sim.verbose = 0;

//-------------------------------
atm.dr0at05mic = 42.44; // this is r0=0.166 at 550 nm
atm.screen = &(Y_USER+"data/screen"+["1","2","3","4"]+".fits");
atm.layerfrac = &([0.4,0.2,0.3,0.1]);
atm.layerspeed = &([11.,20,29,35]);

4 of 22

atm.layeralt = &([0.,400,6000,9000]);
atm.winddir = &([0,0,0,0]);

//-------------------------------
nwfs = 1; // number of WFSs (>1 if e.g. mcao)
wfs = array(wfss,nwfs);

wfs(1).type = "hartmann";
wfs(1).lambda = 0.65;
wfs(1).gspos = [0.,0.];
wfs(1).gsalt = 0.;
wfs(1).gsmag = 5.;
wfs(1).shmethod = 2;
wfs(1).shnxsub = 6;
wfs(1).pixsize = 0.2;
wfs(1).npixels = 10;
wfs(1).noise = 1;
wfs(1).ron = 3.5;
wfs(1).shthreshold = 0.;
wfs(1).nintegcycles= 1;

//-------------------------------
ndm = 2;
dm = array(dms,ndm);

n =1;
dm(n).type = "stackarray";
dm(n).iffile = "";
dm(n).nxact = 7;
dm(n).pitch = 20;
dm(n).alt = 0.;
dm(n).unitpervolt = 0.01;
dm(n).push4imat = 100;

n =2;
dm(n).type = "tiptilt";
dm(n).iffile = "";
dm(n).alt = 0.;
dm(n).unitpervolt = 0.0005;
dm(n).push4imat = 400;

//-------------------------------
mat.condition = &([15.]);
mat.file = "";

//-------------------------------
tel.diam = 7.9;
tel.cobs = 0.1125;

//-------------------------------
target.lambda = &([1.65]);
target.xposition = &([0.]);
target.yposition = &([0]);
target.dispzoom = &([1.]);

//-------------------------------
gs.zeropoint = 1e11;

//-------------------------------
loop.gain = 0.6;
loop.framedelay = 1;
loop.niter = 5000;
loop.ittime = 2e-3;
loop.startskip = 10;
loop.skipevery = 10000;
loop.skipby = 10000;
loop.modalgainfile = "simulModeGains.fits";

//-------------------------------

The parfile defines entirely your system. As you see, it is made of several (9) subsections, in which the 9 main yao
structures are filled. All of the structure members are listed in the yao structure section, together with a short
explanation of each parameters (structure member). How to combine these parameters to get yao to do what you

5 of 22

Figure 1: Typical geometry of a system (WFS and DM)

want is explained in the controlling features section below.

Several comments:

A parfile, and the one above in particular, does not have to include all parameters. Only a few are mandatory
for each elements (WFS, DM) and the rest have reasonable defaults.
The parfile is in fact a yorick include file, and those are yorick statements you see in there. So you can make
use of yorick loops, etc (see for example mcao2-bench.par on how the wfs structure is filled).
Because they can have variable length, and be dynamically re-defined, many structure members are actually
pointers (to vectors or arrays). A pointer in yorick is assigned with the symbol & so that &a is the pointer to the
quantity a. The notation

atm.layerfrac = &([0.4,0.2,0.3,0.1]);

is a shorthand for

a=[0.4,0.2,0.3,0.1];
atm.layerfrac = &a;

If you forget the & sign, it should generate an error.
There are about 20 parfiles in the example directory (remember? find_examples_path() will tell you where this
directory is). Browse through these examples. It is recommended to actually start from one of these,
preferably one that is close to the system you want to simulate, and adapt it to your needs, rather than
starting from scratch.
Once you are done, save the parfile and, in the same directory, start yao and go through the sequence of
aoread(), aoinit(), aoloop() and go() as shown in section 1.

3. Controlling Features

3.1 Overall Geometry

In yao, you have to define the AO system you want to simulate. It starts by defining an entrance aperture (the
system pupil). This is done through 2 parameters: the physical pupil size (e.g. diameter) in real world units,
meters. And because yao is a monte-carlo code, that uses arrays to generate phases and PSFs, we will need a pupil
array and thus a pupil diameter in pixel.

sim.pupildiam <- this is the pupil diameter in pixel (unitless)
tel.diam <- this is the telescope diameter in meters

yao also uses arrays to store the deformable mirror influence functions, etc. Generally speaking, there are two
types of variable and arrays: the one referring to quantities in the near field (pupil plane or close to it, e.g.
altitude layers) and the one referring to quantities in the far field (Shack-Hartmann WFS spots, PSF image,
observed object, etc...).

The figure on the right illustrates how you can set
up a Shack-Hartmann + Stackarray deformable
mirror (allegedly the most common type of AO
system to date). I will review all these parameters
in sections below, but what I want to emphasize
here is the following:

The pupil is defined on a pixel array
The WFS has to be defined (at least SHWFS) to
span an area commensurate with the pupil (see
below). However, it is possible to slightly
oversize, downsize or even shift the WFS w.r.t.
the pupil, if needed.
The DM actuator positions and span also has to
be defined to span an area commensurate with
the pupil and WFS (see below). For a
stackarray mirror, for instance, you typically
want to have the DM pitch equal to the

6 of 22

subaperture size (it doesn't have to be, but it is often the case). As for the WFS, you have the possibility to
mismatch WFS and DMs by choosing a different pitch, or shifting the DM to induce misregistration.

3.1.1 Field of view considerations
The size of the pupil is actually quite important. By property of the Fourier transform, the field of view in the far
field will be defined by the sampling in the near field, following the relation:

FoV = lambda/ps

where ps = tel.diam/sim.pupildiam is the pixel size in meter in the near field. So, for instance,

tel.diam [m] sim.pupildiam [pixels] FoV @650nm [''] FoV @1.65microns [''] Comment

8 128 2.14 5.44

30 256 1.14 2.90 Probably too low

30 512 2.28 5.80

Choose the field of view according to your application. But because eventually you will want to run simulations in
presence of turbulence, I generally advise to take at least 2 points per r0 (near field), and preferably 3. For r0
= 16 cm, that means a sampling of 8 cm (resp 5.33 cm), and for a 8-m telescope that would translate into 100
points (resp 150) across the pupil (sim.pupildiam = 100). If this is not done, you will likely end up with aliasing in the
SHWFS subaperture images (probably less so in the final image if it is estimated in the Near Infrared and the WFS
works in the visible). This is bad and will bias your results. You have been warned.

3.2 Pupil

Historically, yao was developed assuming circular pupils. So in any case, as said above, you will have to define
sim.pupildiam and tel.diam. If another pupil shape is desired, it can be defined through a call to a user defined
function user_pupil(). Click here to show/hide an example.

func make_square_pupil(void)
{
 extern ipupil, pupil;

 ipupil = array(0.0f,[2,sim._size,sim._size]);
 ipupil(sim._cent-sim.pupildiam/2+1:sim._cent+sim.pupildiam/2,
 sim._cent-sim.pupildiam/2+1:sim._cent+sim.pupildiam/2) = 1.0f;
 pupil = ipupil;
}
user_pupil = make_square_pupil;

This function needs to (re)define ipupil (used for the WFS) and pupil (used for the PSF or for CWFS) to override
the default circular pupil definition (so ipupil and pupil needs to be in extern in your function). Both arrays have to
have dimension = sim._size * sim._size. The yao parameters that can be used to define the pupil arrays are

sim._size: size of the primary near field arrays used by yao: pupil, phase, etc...
sim._cent: where the pupil center should be located in the pupil arrays. This could be sim._size/2+1 (on a pixel)
or sim._size/2+0.5 (in between the 4 central pixels of the array), depending of your WFS configuration (see
below).

A SH WFS geometry has some consequences on the centering of the pupil (sim._cent): if the number of
subapertures in the telescope diameter (sh.shnxsub) is even, then obviously the center of the pupil will have to be
within the 4 central subapertures, and because the subapertures size is defined as an integer number of pixels, this
means the pupil has to be center in between 4 pixels. Conversely, if wfs.shnxsub is odd, and wfs.npixpersub is odd
too, then the pupil has to be centered on a pixel (sim._cent = sim/_size/2+1). This is all handled automatically by the
shwfs initialization function, but mentioned here for completeness as it is needed within user_pupil().

3.3 Wavefront Sensors

3.3.1 Shack-Hartmann WFS
Set wfs.type="hartmann". The only other mandatory parameters to define are wfs.shnxsub, wfs.npixpersub,
wfs.npixels, wfs.pixsize and wfs.lambda. Below I expand on these parameters.

7 of 22

3.3.1.1 Near Field

The near field parameters that need to be defined are:

wfs.shnxsub: The number of subapertures in the aperture diameter
wfs.npixpersub: The number of pixels across one subaperture, in the near field.

For a "normal" system, we want wfs.shnxsub * wfs.npixpersub = sim.pupildiam. But as said above, you can make
npixpersub larger or smaller if you want to investigate the effect of subapertures larger or smaller than ideal. Also,
by setting wfs.pupoffset [meter], you can investigate the effect of misregistration of the WFS w.r.t the entrance
pupil (Show/Hide details).

For instance, I have this AO system mounted at Nasmyth and the derotator is not very well aligned, and shifts the
pupil image on the lenslet array by 3% of the overall pupil diameter (say in X). There are 2 ways to simulate this: I
can either re-define the pupil (using user_pupil() as above) or I can use the pupoffset parameter:

wfs.pupoffset = [0.03*tel.diam,0.];

Of course, make sure tel.diam is defined in your parfile before this instruction (or put an explicit numerical value).
Depending on what you want, you will have to also offset the DM (or not) using dm.pupoffset (same units).

3.3.1.2 Far Field

The far field parameters to define for a SHWFS are:

wfs.npixels: The number of (CCD) pixel per subaperture in the far field
wfs.pixsize: The SHWFS (CCD) pixel size, in arcsec.

So that of course, the subaperture field of view will be wfs.npixels * wfs.pixsize. The whole discussion about
sampling above of course applies here too, and field of view can not be arbitrary large. The pixel size is also
constrained by FFT properties, and yao will round the pixel size you have selected to the nearest possible value
(this should be printed out on screen during aoinit if sim.verbose>=1).

3.3.1.3 Field Stops

Since v4.5.0, yao can handle field stops (before also, but not in the same easy fashion), defined using the
parameters wfs.fstop, wfs.fssize and wfs.fsoffset. You have the choice between no field stop (wfs.fstop="none"), or
a square or round field stop (wfs.fstop="square" or "round"). If needed, you can use your own defined geometry by
setting wfs.fsname to the name of a fits file that contains the image of a field stop (show/hide how). The default is to
use a square field stop of size equal to the subaperture field of view (i.e. optimal).

If you elect to do that, I advise you to first run the aoinit() without this parameter, but with some field stop
defined (wfs.fstop and wfs.fssize). When aoinit is done, look at the array *wfs(ns)._submask. This is the field stop that
has been computed with the fstop and fssize parameters. Note that this mask is applied in the C shwfs() routine on
an image of the subaperture spots that has a different sampling than the one you requested with wfs.npixsize, so
that the pixel size in *wfs(ns)._submask is actually wfs.npixsize/wfs._rebinfactor. You can start with *wfs(ns)._submask
and create your own field stop image, save it into a fits file, set wfs.fsname and re-start aoinit(). Note that the field
stop image can be real, i.e. represent partially transparent material.

3.3.1.4 Subaperture Coupling

8 of 22

Figure 2: Shack-Hartmann focal plane features

Figure 3: CWFS Subaperture map

Figure 4: CWFS, effect of rint and rout

Since v4.5.0, yao correctly includes coupling between neighbor subapertures: In a real system, if there is no
field stop, the spot image of a subaperture can wander into a neighbor subaperture and wreak havoc the slope
estimation. yao now correctly handle this behavior: all
subaperture images are computed, then added to an image
that will include all spots. When all spots have been computed,
each spot image is extracted and the spot position is estimated
from there (center of gravity, soon to come weighted CoG,
etc...).

3.3.1.5 Graphic configuration

When the correct debug setting is selected (sim.debug>=1),
aoinit() will display a SHWFS far field graphic configuration
diagram as shown on the right (click on it to enlarge). Reported
on it are:

The SHWFS image. This image is accesible to the user in
*wfs._fimage, if the need arises. This image includes the
spots from all subapertures, including the ones which are
not "valid" (because their fractional flux is lower than
wfs.fracIllum). The valid subaperture spots are indicated by
the thin grey squares.
For one spot, the diagram plots :

the subaperture effective field of view (green square),
the total field of view spanned by this subaperture (see discussion on field of view above), in which the
spot can wander (red square) and
the outline of the field stop (in magenta).

3.3.2 Curvature WFS
Set wfs.type="curvature". The only other mandatory parameters to define are wfs.l, wfs.nsubperring and wfs.lambda:

wfs.l is the extra focal distance in an F/60 beam. The first curvature system for astronomy, the UH13, had a
WFS input beam of F/60 (on the membrane mirror), and thus use to define extra focal distance in a F/60
beam. I wrote aosimul, the precursor to yao, to model PUEO, the curvature system for the CFHT, which was
largely based on UH13. So from then on, to have a common ground, I (and
other people) used to quote extra focal distances in a F/60 beam. It is easy
to make the conversion to another F ratio, but yao only handles these
units.
Note that the extra-focal image is computed as the Fresnel diffraction of
the pupil complex amplitude, using the following algorithm:

Fourier Transform the pupil complex amplitude
add a quadratic (focus) term with amplitude alpha
Fourier transform back

What you get after that is a defocused pupil image. This has limitations.
For instance, it is not possible to compute an image too close to focus, as
this would imply alpha = !. Of course, this depends of the sampling in the
near field, but typically, one can cover reasonable extra focal distances of
5-10cm up (typical systems like PUEO use 15-20cm depending on the seeing, NICI on Gemini uses 40cm).
wfs.nsubperring: typically, to date, most of the curvature WFS for astronomy
were based on a polar design: rings of subapertures. wfs.nsubperring is a
pointer to a long vector that contains the number of subaperture per ring: the
first element is the number of subapertures in the first ring, the second
element the number of subaperture in the second ring, etc.. so that
wfs.nsubperring could look like &([6,12,18]) for a system with 3 rings of with 6,
12 and 18 subapertures (the & is because wfs.nsubperring is a pointer). yao
automatically computes the inner and outer radius of each ring so that every
subaperture receives the same amount of light. The user can modify this
behavior by setting wfs.rint and wfs.rout to speficy the inner and outer radius
of each ring. (show/hide details). The subapertures are defined on an array,
that is, each pixels of an array of the same size as ipupil belongs to one and
only one subaperture. After an aoinit(), you can get a view of the
subaperture number map (figure 3) by calling:

9 of 22

// call again the subap init function:
subs = make_curv_wfs_subs(ns,sim._size,sim.pupildiam,cobs=tel.cobs);
// build the one image where pixel value = subaperture number
submap = (subs*(indgen(wfs(ns)._nsub)(-,-,)))(,,sum);
// display it:
fma; pli submap;

wfs.rint and wfs.rout can modify this behavior and let the user impose his/her own inner and outer radius for
each ring. Just set wfs.rint and wfs.rout to the N ring inner radius (in fraction of pupil radius), e.g.

 wfs.rint = &([0.2,0.6,0.9]);
 wfs.rout = &([0.55,0.85,1.5]);

to produce something like on figure 4 (the red line is the pupil outline). This comes handy to take into account
dead zones between rings due to glue, etc... We will see later that the same can be done for curvature DM.
You can also rotate rings using wfs.angleoffset, which points to a float vector of same dimension as
wfs.nsubperring, containing the angle offset per ring. For instance in the figure 4 case, if I wanted to have the
external ring rotated 90 degrees CCW so that the green/white subaperture edge is at 12:00 o'clock, I would
use wfs.angleoffset = &float([0,0,90.])

3.3.3 Zernike WFS
Set wfs.type="zernike". The only other mandatory parameter is wfs.nzer, which, as its name says, define the number
of zernike in the WFS. Note that this include piston, so wfs.nzer=11 would include up to spherical (included).
Important note: The Zernike are the Noll Zernike (see Noll 1976), which are not the standard Zernike, but the
one used most commonly in AO. Normalization??

3.3.4 User defined WFS
Set wfs.type="name_of_your_function".

Users can define their own WFS, to be integrated into the yao flow. The API are relatively straighforward:

func user_wfs_func(ipupil,phase,ns,init=)

where
ipupil and phase are the pupil and phase (size sim._size),
ns is the WFS number (as defined in the parfile), and
init is just a flag set the first time this function is called (in aoinit()) that allow the user function to make some
initializations, if needed.

The function should return a measurement vector (show/hide example).

This is the simplest and dumbest example: a WFS that return the absolute piston of the input phase (I know...)

func piston_wfs(pup,phase,ns,init=)
{
 if (init) {
 /* do whatever you need to do and keep possible
 init variable in extern
 here we don't need to init anything. */
 }
 return avg(phase(where(pup)));
}

3.3.5 Photometry and noise
Photometry and noise are only relevant (and implemented) for Shack-Hartmann and Curvature WFS.

All the photometry is controlled with the wfs.gsmag, wfs.skymag and wfs.zeropoint. wfs.zeropoint is defined in
photons/second/full_aperture (incident on the telescope aperture, i.e. after crossing the atmosphere). Note that
this depends on the telescope diameter (may be it was a bad choice to define it like that, but now it's done). It is
simple enough to convert known photometric zero point to yao zeropoint. The number of photons available for
WFSing is derived from this zeropoint and the above mentioned magnitude following regular equations (see also
wfs.optthroughput).

yao doesn't have a concept of ADU. Or rather, I am assuming one electron/ADU across the board. So the signal in
in electrons, and the noise is also in electrons.

10 of 22

3.4 Deformable Mirrors

The deformable mirrors are entirely and solely defined through their influence functions (shape and location).
During the aoinit() phase, yao calls DM influence function definition functions, for each DM in the parameter file.
Once computed, the influence functions are stored in the dm structure (*dm._def) and saved on disk for future runs
(name-if#.fits files). Note that if you have a set of commands, you can get the DM surface by calling

surf = compute_dm_shape(nm,command_ptr);

where command_ptr is a pointer to a float vector containing the DM commands (e.g. command_ptr =
&(float(indgen(dm._nact)))).

3.4.1 Stackarray (PZT,SAM,Piezo) DM
Set dm.type="stackarray". The only other mandatory parameters for stackarrays are dm.pitch and dm.nxact.

3.4.1.1 Dimensioning

dm.nxact sets the number of actuators in the diameter of the DM (along the X or Y axis). This includes
extrapolated/slaved actuators/guard rings.

dm.pitch sets the pitch (i.e. interactuator distance) in near field pixels.

Note that you have to dimension the stackarray DM according to your base system definition (sim.pupildiam). If you
set sim.pupildiam=60 and dm.nxact=7 and you do not desire an extra ring of actuator, then you should set dm.pitch=10
to span the entire pupil diameter (7 actuators, 6 spaces between actuators...).

3.4.1.2 Influence functions

This was the first type of DM implemented in yao. With time, we have implemented several type of influence
functions. By default, it uses a functional form which was first derived by J.-P. Gaffard of then CGE (now CILAS) to
fit ZIGO measurements of CGE DM's real influence functions. It is possible to use newer (but not necessarily
better) forms by setting dm.irexp:

dm.irexp functional form

0 Old, adhoc functional form fitted on actual ZIGO data

1 exp(-(d/irfact)^1.5)

2 sinc*gaussian

irfact is set through dm.irfact.

3.4.1.3 Actuator Coupling

You can set the inter-actuator coupling with dm.coupling. dm.coupling=0.3 means 30% coupling between an actuator
and its nearest neighbor. Typical value are 0.1-0.4. The almost universal consensus nowadays is to use coupling
values of about 0.3.

3.4.1.4 Saving RAM & Disk with dm.elt

Stackarray mirrors have very local influence functions. Therefore, for large number of actuators, most of the
surface of the DM is zero. It is thus a big waste of RAM and disk (these influence functions take a lot of space).
Enabling dm.elt will save most of this space back: only a small subsection of the whole DM surface is kept,
surrounding the actuator. The coordinates of this subimage is kept, and used later by comp_dm_shape() to compute
the correct DM shape. The call to comp_dm_shape() is transparent. Depending on the value of dm.elt for the current
DM, comp_dm_shape() will call the relevant C routine. In fact, there is no compromise in setting dm.elt, but its benefit
really only show up for large stackarray DM (dm.nxact"10).

3.4.1.5 Extrapolated/Slaved actuators

The idea in yao is to define all of your stackarray mirror in your parameter file, then run aoinit() and calibrate the
iMat, then select which actuators are controlled and which are extrapolated based on the WFS sensitivity to it. Use
dm.thresholdresp to select this threshold. This is a fractional number, so 0 would filter all actuators and 1 would
retain them all. 0.5 would retain all actuator which measurement max response is larger than the max response of
all actuators. Note that if you set dm.thresholdresp to a negative value, aoinit() will enter an interactive mode into
which you can test various values of dm.thresholdresp (Show/Hide example).

In this example, I have a SHWFS with 8x8 subapertures and a stackarray DM with 13x13 actuators. The relevant

11 of 22

parts of the parfile are as follow:

sim.pupildiam = 256;

wfs = array(wfss,1);
wfs(1).type = "hartmann";
wfs(1).shnxsub = 8;
wfs(1).npixpersub = 32;
wfs(1).lambda = 0.65;
wfs(1).pixsize = 0.25;
wfs(1).npixels = 8;

dm = array(dms,1);
dm(1).type = "stackarray";
dm(1).iffile = "";
dm(1).nxact = 13;
dm(1).pitch = 32;
dm(1).alt = 0.;
dm(1).thresholdresp = -0.1;

After doing the iMat calibration in aoinit(), and if dm.thresholdresp<0, you will be presented with the figure shown
above on the left. Notice that all actuators are red, which means they are currently all valid. In the yorick console,
yao will write the current number of valid actuators. Answer "y" and enter a new threshold (here I entered 0.5).
The plot updates (see figure above on the right) and now shows valid actuator (still in red) and extrapolated
actuators (now in foreground color -here black-). Once you are satisfied, answer "n" to "Again?" and yao will
proceed.

DM #1: # of valid actuators: 157 Again ? y
Threshold (old = -0.100000) : 0.5
type return to continue...
DM #1: # of valid actuators: 69 Again ? n
 DM #1: # of valid actuators: 69. (I got rid of 88 actuators after iMat)
 >> valid I.F. stored in test-if1.fits

Once extrapolated actuators are selected, yao stores the valid influence functions and the extrapolated ones in 2
different files (e.g. test-if1.fits and test-if1-ext.fits). Influence functions are not recomputed in further calls to
aoinit() unless the clean keyword is set (in which case aoinit() restart from scratch and recompute everything).

Normalization??

3.4.2 Bimorph (curvature) DM
Set dm.type="bimorph". The other mandatory parameter is dm.nelperring.

dm.nelperring: This is similar to wfs.nsubperring (see here) and defines the number of electrodes per ring.

12 of 22

Now, most curvature mirror are a bit different from this simple design provided by defining dm.nelperring, in which
there is no gap between rings. Many curvature DMs have for instance a large gap between the outer ring of
electrodes (the one that create mostly boundary conditions) and the next inner electrode ring. To create more
realistic DM electrode pattern, use angleoffset, rint, rout, supportRadius and supportOffset.

The general idea follows what has been exposed in the curvature WFS area above. With rint and rout, one can
define the inner and outer radius of each ring of electrodes, expressed in fraction of the pupil radius. With
angleoffset, one can define a global rotation per ring, and with the support* parameters, one can define the physical
properties of the 3 DM support points.

That brings us to the next subject: how curvature DMs are modelled. Right now, what we do is solve the Poisson
equation, imposing a given curvature over a given electrode and integrating twice to get the DM surface. Then, we
impose that the three points defined as the support location go through the z=0 plane. It's that simple. It means
that we do not currently support fancier support method like continuous support (e.g. by a rubber ring), 6 points
support, etc..

3.4.3 Modal (Zernike, Karhuenen-Loeve) DM
Set dm.type="zernike" or "kl". Other mandatory keywords are dm.nzer (for zernike) or dm.nkl (for KL), which specify
the number of modes. Note that nzer will start and include piston, while nkl will not (there is formally no piston
mode in the KL basis).

3.4.4 Segmented DM
Set dm.type="segmented". The other mandatory keywords is dm.nxseg.

dm.nxseg is the number of segment in the long diameter (X axis).

dm.fradius stands for "filter radius". Segments are created over a wider area than the nxseg defined above. Only
segments which distance to the (0,0) pupil coordinates is # fradius will be kept. default dm.pitch*dm.nxseg/2.

3.4.5 User defined DM
Set dm.type="name_of_your_function" (as a string).

The API for the user provided DM function are as follow:

func make_my_dm(nm,disp=)

where nm is the DM number. Use the disp keyword to display whatever you need to display when this routine is
called. The goal of this routine is to create maps of the influence functions. These maps have to be stored (thus
this function has to create and fill) in the array *dm._def (dm._def is a pointer to the data). The proper way to do
that is:

func make_my_dm(nm)
{
 extern dm; // dm is extern (global)
 dim = dm(nm)._n2-dm(nm)._n1+1; // <- important
 def = array(float,[3,dim,dim,n_actuator]);
 for (i=1;i<=n_actuator;i++) def(,,i) = some_form; // <- fill it to your taste
 dm(nm)._def = &def; // <- store influence functions
 dm(nm)._nact = n_actuator; // <- important, number of actuators
}

Explanation: In this user supplied function, you have to define the influence functions (*dm._def) and, importantly,
the number of actuators (dm._nact). Prior to the call to this function, aoinit() has defined dm._n1 and dm._n2, which
are the indices at which these influence function will go in the big sim._size x sim._size array used for FFT, etc. The
influence functions are reduced in size to save RAM, as they can potentially take a lot of memory space. Normally,
dm._n1 and dm._n2 are defined to include the pupil pixel diameter (sim.pupildiam) plus 4 pixels padding on each side if
the DM altitude is zero (in the pupil), and are defined to span the entire sim._size array if the DM altitude is above
ground (as there is no simple way to know where to stop exactly as this depends on the WFS and target locations).
Note that dm is defined in extern as you are modifying its value.

3.4.6 Tip-Tilt Mirror
Set dm.type="tiptilt".

This creates a regular tip-tilt mirror. The units in the command vector are arcsecs.

3.4.7 Anisoplanatism "DM"

13 of 22

Set dm.type="aniso".

This has been implemented because of the need in MCAO to control plate scale modes (also called anisoplanatism
modes or quadratic modes). You will need to set dm.alt to the altitude of an existing DM of a regular type (e.g.
stackarray) that will be responsible for the creation of the anisoplanatism modes (see mcao2-bench.par for an
example of aniso DM).

3.4.8 Hysteresis and misregistration/offset

3.4.8.1 Hysteresis

Hysteresis is implemented at the top level so that it works for any kind of DM (during the AO loop only). The
parameter dm.hysteresis is fairly self explanatory: dm.hysteresis=0.1 means 10% hysteresis.

3.4.8.2 Misregistration

dm.misreg allow to induce DM misregistration (on the fly). dm.misreg is expressed in pixels, so you will have to do a
small conversion to get it in other units, but this way, it works for any kind of DM. Note that dm.misreg can be
fractional (fraction of a pixel). Because the size of the array containing the DM influence function is limited to save
memory space, the misregistration using this parameter can only be of a few pixels (up to 4 I believe for a ground-
conjugated DM). If you wish to induce more registration, use the parameter dm.pupoffset (see below).

3.4.8.3 Offsets

Yao v4.5.0 introduced a new kind of influence function offset parameter: dm.pupoffset. dm.pupoffset is entered in
meters (a 2 elements vector which contains the x and the y offsets). Those are transversal offset of the influence
functions in the near field. This functionality is implemented in the compute_dm_shape() function, so it is general and
works for all types of DM. dm.pupoffset is intended for large offsets, and the influence functions are shifted by an
integer number of pixels (the requested offset in meter, rounded to the nearest pixel, see sim.pupildiam and
tel.diam). If you want finer control over the DM position, use dm.misreg (see above). dm.pupoffset is similar to
wfs.pupoffset (see WFS section), but for the DMs.

3.5 Other Features

More to come (a note to myself).

disjoint pupils
loop parameters: framedelay, control law
Normalization of various parameters and arrays
Variables (aoinit or not aoinit?)
Vibrations parametrization

4. Yao Structures

Comment on notation: &float = pointer to a float array/vector (idem for &long, &string, etc...). Define it as:

atm(1).layerfrac = &([0.5,0.2,0.3]);

I know, it seems weird, but there is a good reason to have done it like this.

sim structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

name string N/A none no A name for this simulation run

pupildiam long pixels none yes Pupil diameter

debug long N/A 0 no Debug level

verbose long N/A 0 no Verbose level

atm structure

14 of 22

VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

dr0at05mic float Unitless none yes Dr0 at 0.5 microns, at zenith

screen &string N/A none yes Phase screen file names

layerfrac &float Unitless none yes Layer fraction. Sum to one is insured in
aoinit

layerspeed &float meter/sec none yes Layer speed

layeralt &float meter none yes Layer altitude, at Zenith

winddir &long Unitless 0 yes Wind dir (not operational, use 0 for now)

wfs structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

type string N/A none yes Valid types are "curvature", "hartmann",
"pyramid", "zernike" or "user_function"
where user_function is the name of a
function defined by the user (see doc)

lambda float micron none yes WFS wavelength in microns

subsystem long N/A 1 no Subsystem this WFS belongs to

gsmag float Unitless 0 no WFS guide star magnitude. For LGSs, see
below

skymag float Unitless 0 (no
sky)

no WFS sky magnitude/arcsec^2. [0 means
no sky]

noise long N/A 0 no Enable noise (photon noise & read out
noise)

ron float e- 0 no Read out noise

darkcurrent float e-/s/pixel 0 no Dark current

gspos(2) float arcsec [0,0] no WFS guide star position [x,y]

gsalt float meter 0 no WFS guide star altitude, at zenith. 0 for
infinity.

gsdepth float meter 0 no WFS guide star depth in meter, at zenith
(e.g. Na layer thickness)

laserpower float Watt 0 See
comment

WFS laser power projected on sky (Na
laser only). Required when using lasers.
Exclusive with gsmag i.e. define one OR
the other

filtertilt long N/A 0 no Filter TT on this sensor (0=no)

correctUpTT long N/A 0 no Correct uplink tip-tilt (0=no)

uplinkgain float Unitless 0 no Uplink TT loop gain

dispzoom float N/A 1.0 no Zoom factor for the display, useful in
multi-WFS configuration (typically around
1)

optthroughput float Unitless 1.0 no Optical throughput to WFS

disjointpup long N/A 0 no If set, the WFS#n will be filtered by an
array disjointpup(,,n) that has to be
defined by the user. see user_pupil().
Allow for GMT-type topology

Curvature WFS only keywords

l float meter none yes Extra focal distance in a F/60 beam

nsubperring &long Unitless none yes # of subapertures per ring. See doc

15 of 22

angleoffset &float degree 0 no CCW Offset angle for first subaperture of
ring. See doc

rint &float Unitless See
comment

no Inner radius for each ring, in fraction of
pupil radius

rout &float Unitless See
comment

no Outer radius for each ring, in fraction of
pupil radius

fieldstopdiam float arcsec 1.0 no Diameter of field stop. Used only to
compute sky contribution (with skymag)

Shack-Hartmann WFS only keywords

shmethod long N/A none yes 1= Geometric, simple gradient average
over subaperture. 2=Diffractive, full
propagation

shnxsub long Unitless none yes # of subapertures in telescope diameter

pixsize float arcsec none yes Focal plane: Subaperture CCD pixel size
in arcsec

npixels int Unitless none yes Focal plane: Final # of pixels per
subaperture

npixpersub long Unitless none no Pupil plane: # of pixel in a subaperture
(to force npixpersub and bypass
constraint that pupildiam should be a
multiple of this number e.g. to
investigate lenslet larger than pupildiam

pupoffset(2) float meter [0,0] no Pupil plane: Offset of the whole WFS
subapertures w.r.t telescope aperture.
Allow misregistration w.r.t telescope pupil
and other funky configurations

shthreshold float e- 0 no Threshold for the computation of the
subaperture signal from CCD spots >= 0

biasrmserror float e- 0 no rms error on WFS CCD bias in electron

flatrmserror float Unitless 0 no rms error on WFS CCD flat, referenced to
1 (i.e. 0.1 mean 10% rms error). Typical
value can be 0.01

fsname string N/A none no Fits file with subaperture amplitude
mask. It should have dimension
2^sdimpow2 square. Can be float or
long.

fstop string N/A "square" no Valid fiels stop type are "none", "square"
or "round"

fssize float arcsec sub. size no Side (square) or diameter (round) of field
stop

fsoffset(2) float arcsec [0,0] no Field stop offsets [x,y]

kernel float arcsec See
comment

no FWHM in arcsec of WFS spot gaussian
kernel. Default is computed as a function
of D/r0 and only used during iMat
calibration

nintegcycles int Unitless 1 no # of iterations over which to integrate
before delivering slopes

fracIllum float Unitless 0.5 no Focal plane: Fraction of subaperture
illuminated for the subaperture to be
valid

LLTxy(2) float meter [0,0] no Coordinates [x,y] of the laser projector, if
any

16 of 22

centGainOpt long N/A 0 no Centroid gain optimization flag. Only for
LGS (correctupTT and filtertilt must also
be set for this to work)

rayleighflag int N/A 0 no Take rayleigh into account?

Zernike WFS only keywords

nzer int Unitless none yes Number of Zernike to be sensed. Starts
at piston included.

dm structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

type string N/A none yes Valid types are "bimorph", "stackarray"
"tiptilt", "zernike", "kl", "segmented",
"aniso" or "user_function", where
user_function is the name of a function
provided by the user

pitch long pixel none yes Actuator pitch (pixel).
stackarray/segmented only

subsystem long N/A 1 no Subsystem this DM belongs to

iffile string N/A "" no Influence function file name. Leave it
alone.

alt float meter 0 no Conjugation altitude, at zenith

hyst float Unitless 0 no DM actuator hysteresis (0. to 1.)

push4imat float Volt 20 no Voltage to apply for iMat calibration.
Note: the default is not OK for many
configs. Change at will

thresholdresp float Unitless 0.3 no Normalized response threshold (in WFS
signal) below which an actuator will not
be kept as valid

unitpervolt float mic/Volt 0.01 no Influence function sensitivity in unit/volt.
Stackarray: micron/Volt, Tip-tilt:
arcsec/Volt.

maxvolt float Volt none no Saturation voltage (- and +) in Volt.
None if not set

gain float Unitless 1.0 no Loop gain for this DM (total = this times
loop.gain)

misreg(2) float pixel [0,0] no DM misregistration [x,y]

xflip long N/A 0 no Flip DM left/right (0=no)

yflip long N/A 0 no Flip DM up/down (0=no)

pupoffset(2) float meter [0,0] no Global offset of whole actuator pattern
w.r.t pupil

disjointpup long M/A 0 no If set, dm(n) will be filtered by an array
disjointpup(,,n) that has to be defined by
the user. See user_pupil(). Allow for
GMT-type topology.

Stackarray-only (SAM, PZT) keywords

nxact long Unitless none yes Number of actuator in pupil diameter

elt long N/A 0 no ELT mode: allow to save huge amount of
RAM and time for the computation of the
DM shape. No drawback

coupling float Unitless 0.2 no Influence function coupling coefficient

17 of 22

ecmatfile string N/A none no Valid to extrapolated projection matrix
(extrap_com)

noextrap long N/A 0 no Set to disable use of extrapolated
actuators

pitchMargin float Unitless 1.44 no Margin to include more corner actuators
when creating inf.functions optional
[1.44]

irexp long N/A 0 no Use original functional form (irexp=0) or
exp(-(d/irfact)^1.5) model (irexp=1) or
sinc*gaussian (irexp=2)

irfact float Unitless 1.0 no use when irexp=1 (see above)

Bimorph-only keywords

nelperring &long Unitless none yes Number of electrodes per ring, e.g
&([6,12,18])

angleoffset &float degree 0 no Offset angle for first electrode in ring

rint &float Unitless See
comment

no Inner radius for each ring, see doc

rout &float Unitless See
comment

no Outer radius for each ring, see doc

supportRadius float Unitless 2.2 no Radius of DM 3 support points,
normalized in pupil radius

supportOffset float dgree 90 no Angle offset of first support point

Zernike DM-only keywords

nzer long Unitless none yes Number of Zernike modes, including
piston???

Karhuenen-Loeve DM-only keywords

nkl long Unitless none yes Number of Karhuenen-Loeve modes,
including piston???

Segmented DM-only keywords

nxseg long Unitless none yes Number of segments in long axis (X)

fradius float pixel See
comment

no Segments are created over a wider area
than the nxseg defined above. Only
segments which distance to the (0,0)
pupil coordinates is <= fradius will be
kept. default dm.pitch*dm.nxseg/2.

mat structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

condition &float Unitless none yes Condition numbers for SVD, per
subsystem.

file string N/A none ??? iMat and cMat filename. Leave it alone.

tel structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

diam float meter none yes Telescope diameter

cobs float Unitless 0. no Central obstruction / telescope diameter
ratio

Tip vibration parameters

18 of 22

tipvib_white_rms float arcsec 0. no rms of vibration white noise

tipvib_1overf_rms float arcsec 0. no rms of vibration 1/f noise (from 1 Hz to
cutoff)

tipvib_peaks &float Hz 0 no positions of vibration peak in PSD

tipvib_peaks_rms &float arcsec 0 no rms of each vibration peaks (defined
above)

tipvib_peaks_width &float Hz 1freq bin no width of each vibration peaks (default 1
freq bin)

tilt vibration parameters

tiltvib_white_rms float arcsec 0. no rms of vibration white noise

tiltvib_1overf_rms float arcsec 0. no rms of vibration 1/f noise (from 1 Hz to
cutoff)

tiltvib_peaks &float Hz 0 no positions of vibration peak in PSD

tiltvib_peaks_rms &float arcsec 0 no rms of each vibration peaks (defined
above)

tiltvib_peaks_width &float Hz 1freq bin no width of each vibration peaks (default 1
freq bin)

target structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

lambda &float micron none yes Image wavelengths in micron

xposition &float arcsec none yes "Targets" X positions in the field of view

yposition &float arcsec none yes "Targets" Y positions in the field of view

dispzoom &float Unitless 1. no Display zoom, useful for multi-targets.
Typically around 1

gs structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

zeropoint float See
comment

none yes Photometric zero point
(#photons@pupil/s/full_aper, mag0 star).

zenithangle float degree 0 no Zenith angle. The zenith angle is used to
compute: r0 off-zenith, atmopheric
turbulence layer altitude, LGS altitude
and thickness of Na Layer, LGS brighness
note that dm altitude is unchanged

lgsreturnperwatt float phot/cm2/s 22. no Sodium LGS return in photons/Watt
/cm2/s at entrance pupil, at zenith.
Modified by gs.zenithangle. Basically, you
have to fold in this the sodium density
and your model of return

loop structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

niter long Unitless none yes Total number of iterations

ittime float second none yes Iteration time (sampling time)

gain float Unitless 0 See
comment

Loop gain. Optional, but important!

leak float Unitless 0 no Leak term (0 means no leak)

19 of 22

gainho &float Unitless 0 no Higher order gains (starting at 2nd order,
up to 10th)

leakho &float Unitless 0 no Higher order leaks (starting at 2nd order,
up to 10th)

framedelay long frames 0 no Loop delay (# of frames). Regular CCD 1
frame integration -> framedelay=1 +
readout & Calculation -> framedelay=2

startskip long iteration 10 no Number of iteration to skip before
collecting statistics

skipevery long iteration 0 no In phase screen, skip by "skipby" steps
every "skipevery" iterations (0=none).
See doc

skipby long iteration 10000 no See above. This is to get better statistical
coverage

stats_every long iteration 4 no Compute stats every so many iteration

jumps2swapscreen long Unitless 0 no Number of jumps (i.e. niter/skipevery)
after which screens will be swapped
(rotation, 2->1, 3->2... 1->last). Default
is no jump.

modalgainfile string N/A "" no Name of file with mode gains

opt structure
VARIABLE NAME TYPE UNITS DEFAULT REQ? COMMENT

phasemaps string N/A none no Filename of phasemap. Z scale should be
in microns

alt float meter 0 no Equivalent altitude in m.

misreg(2) float pixels [0,0] no Misregistration [x,y] (similar to DM, see
above)

5. Scripting and Hacking Yao

5.1 Scripting

Thanks to yorick and the structure of yao, scripting is relatively easy. The principle is as follow:

read the parfile
init yao (aoinit)
Loop on parameters you want to loop on:

set parameters
if needed, redo the aoinit (some parameters will need that)
go through the loop N iterations
store the results

Plot/save results

Here is a simple example you can find in the examples directory (yao_loop_example.i):

require,"yao.i";

// check if generic phase screens exist, if not, create them:
write,"CREATING PHASE SCREENS";
if (!open(Y_USER+"data/screen1.fits","r",1)) {
 create_phase_screens,1024,256,prefix=YUSER+"data/screen";
 }

20 of 22

// the "wait" is needed here:
window,33,wait=1;

// read out parfile
aoread,"test.par";
atm.dr0at05mic = 35; // be more gentle

// Define vector on which we want to loop and final strehl array.
// We want to estimate performance for 3 values of the guide star
// magnitude and 4 values of the loop gain (for instance)
gsmagv = [6,9,12]; // guide star mag vector
gainv = [0.01,0.1,0.5,1.0]; // gain vector
// strehl array to store results:
strehlarray = array(0.,[2,numberof(gsmagv),numberof(gainv)]);

// loop on gsmag and gain
for (ii=1;ii<=numberof(gsmagv);ii++) {
 for (jj=1;jj<=numberof(gainv);jj++) {
 wfs(1).gsmag=gsmagv(ii);
 loop.gain=gainv(jj);
 // it's safer, but not always necessary, to call again
 // aoinit (here for gsmag). some parameters do not need it.
 aoinit,disp=1;
 // Setup loop:
 aoloop,disp=1;
 // go: do all loop.niter
 go, all=1;
 // after_loop() is now called automatically at last iter of go()
 strehlarray(ii,jj) = strehllp(0); // fill in result array
 // and display results as we go:
 window,33;
 fma;
 for (ll=1;ll<=ii;ll++) {
 plg,strehlarray(ll,),gainv,color=-ll-4;
 plp,strehlarray(ll,),gainv,color=-ll-4,symbol=4,size=0.6;
 ylims=limits()(3:4); ymax=ylims(2); yspace=(ylims(2)-ylims(1))/15.;
 plt,swrite(format="gsmag=%d",gsmagv(ll)),0.011,ymax-yspace*(ll-1), \
 justify="LT",tosys=1,color=-ll-4;
 }
 logxy,1,0;
 xytitles,"Loop Gain",swrite(format="Strehl @ %.2fmicrons",(*target.lambda)(0));
 window,0;
 }
}

You can do all kind of scripting like this to find for instance the optimal working point for a system in given
conditions (above, what is the best gain for a given GS magnitude). We could also have added a loop on wfs.ittime
in the example above. One has however to be careful: Probing multi-dimensional spaces can quickly be
overwhelming in execution time. Generally, I consider that 10000 iterations are needed to give a statistically
significant answer. So for instance, in the example above. that would mean 4x3x10000=120000 iterations total. At
90 iterations/seconds, this means 1300 seconds (about 20mn). Adding 4 points for wfs.ittime would lead to 480000
iterations, or 1 hour and 20mn. This can quickly become prohibitive.

5.2 Hacking Yao

At one point or another, if you are serious about simulating your system, it is likely that you will need this or that
feature, or modification to the existing yao code.

Go ahead and dive. Feel free to modify yao. It's open source after all. The goal of this too-short section is to give
you some head start for doing just that: hacking yao.

So, various points, in no particular order:

The functions are kind of gathered by themes. The main file is yao.i, and includes the base functions aoread(),
aoinit(), aoloop(), go(), after_loop() and more. Other important include files are:

yao_wfs.i: All functions related to WFS and their initialization.
yao_dm.i: All functions related to DM and their initialization.
turbulence.i: Functions to generate turbulent phase screens. Some more turbulence functions are in yao.i
yao_structures.i: Definitions of yao structures.

21 of 22

aoutil.i and yao_util.i: check_parameters, and in general utility functions that didn't fit anywhere else.
yao_fast.i and yao_utils.i: Interface functions to the C routines. Mostly declaration of prototypes as per
yorick plug_in APIs.
yaokl.i: KL creation functions.
yao_fast.c: C code for the SHWFS and CWFS, plus some Poisson and Gaussian noise fast functions.

Many variables are defined in extern. This means they are available at any level. Here is a subset of them:
All the yao structures: wfs, dm, atm, sim, mat, tel, target, gs, loop. There are sufficient examples in the
code of how to address them. These will contain most of the information you may want.
Variables that may be useful to catch and store/analyze when the loop is finished are (loop in go() and
after_loop() for more details):

imav(sim._size,sim._size,#_target,#_lambda): the averaged images for each target and at each requested
wavelength.
strehl(#_target,#_lambda) contains the long exposure image Strehl ratio for each target and each
requested wavelength.
fwhm(#_target,#_lambda) contains the long exposure image FWHM for each target and each requested
wavelength [mas].
e50(#_target,#_lambda) contains the long exposure image 50% encircled energy diameter for each
target and each requested wavelength [mas].
cbmes, cbcom, cberr are the "circular buffers" that contain all WFS measurements, DM commands and
DM errors (updates to DMs at each iterations). Only saved if keyword savecb is set in call to aoloop().

iMat, cMat: Interaction and control matrices. One axis is the WFS axis. The WFS measurements are put in
sequence: all X, then all Y for WFS#1, then all X, then all Y for WFS#2, etc... The other axis is the DM
axis. Here also, all valid actuators for DM#1, then DM#2, etc...
modToAct, mesToMod, eigenvalues: The U, transpose of V and eigenvalues of the SVD inversion. Over the
unmasked eigenvalues, cMat is computed as follow:

cmat = (modToAct(,+) * mev(+,))(,+) * mesToMod(+,);

6. Conclusion

There is a lot of things missing in this documentation. I will try to complement it as time allows. I hope however
that this will help you getting the best out of yao and avoiding frustration. Yao is a fairly complete AO simulation
tool. It is flexible and fast. Flexibility means I can not exert too much control over the user input parameters. If I
were to do that, I would necessarily impose a carcan over your creativity, and we want to avoid this at all cost. So,
yes, there is a steep learning curve, but at the end, you should be able to wrestle yao into submission! I have only
one more advice to give: check your results. And recheck them. And make sure it makes physical sense.

22 of 22

